2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:·如果事件、互斥,那么.·如果事件、相互独立,那么.·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高.·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A.B.C.D.2.设变量满足约束条件则目标函数的最大值为A.2B.3C.5D.63.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出的值为A.5B.8C.24D.295.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为A.B.C.D.6.已知,,,则的大小关系为A.B.C.D.7.已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则A.B.C.D.8.已知,设函数若关于的不等式在上恒成立,则的取值范围为A.B.C.D.2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二.填空题:本大题共6小题,每小题5分,共30分.9.是虚数单位,则的值为_____________.10.的展开式中的常数项为_____________.11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.12.设,直线和圆(为参数)相切,则的值为_____________.13.设,则的最小值为_____________.14.在四边形中,,点在线段的延长线上,且,则_____________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.17.(本小题满分13分)如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.18.(本小题满分13分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19.(本小题满分14分)设是等差数列,是等比数列.已知.(Ⅰ)求和的通项公式;(Ⅱ)设数列满足其中.(i)求数列的通项公式;(ii)求.20.(本小题满分14分)设函数为的导函数.(Ⅰ)求的单调区间;(Ⅱ)当时,证明;(Ⅲ)设为函数在区间内的零点,其中,证明.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】【分析】先求,再求。【详解】因为,所以.故选D。【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设【答案】C【解析】【分析】画出可...