0绝密★启用前试卷类型:B2010年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。考试用时120分钟。注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4.作答选作题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。参考公式:锥体的体积公式ShV31,其中S是锥体的底面积,h是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合3,2,1,0A,4,2,1B则集合BAA.4,3,2,1,0B.4,3,2,1C.2,1D.解:并集,选A.2.函数)1lg()(xxf的定义域是A.),2(B.),1(C.),1[D.),2[解:01x,得1x,选B.3.若函数xxxf33)(与xxxg33)(的定义域均为R,则A.)(xf与)(xg与均为偶函数B.)(xf为奇函数,)(xg为偶函数C.)(xf与)(xg与均为奇函数D.)(xf为偶函数,)(xg为奇函数解:由于)(33)()(xfxfxx,故)(xf是偶函数,排除B、C由题意知,圆心在y轴左侧,排除A、C在AORt0,210kAOA,故50510500OOOA,选D7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A.54B.53C.52D.5110.在集合dcba,,,上定义两种运算和如下abcdaabcdbbbbbccbcbddbbd那么da()cA.aB.bC.cD.d解:由上表可知:a(cc),故da()cdac,选A二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。(一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为(单位:吨)。根据图2所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为23.第一(1i)步:11011ixss第二(2i)步:5.25.1111ixss第三(3i)步:45.15.211ixss第四(4i)步:62411ixss,23641s第五(5i)步:45i,输出23s(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CBAB,AB=AD=a,CD=2a,点E,F分别为线段AB,AD的中点,则EF=2a解:连结DE,可知AED为直角三角形。则EF是DEARt斜边上的中线,等于斜边的一半,为2a.15.(坐标系与参数方程选做题)在极坐标系),()20(中,曲线1)sin(cos与1)sin(cos的交点的极坐标为.17.(本小题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计554510018.(本小题满分14分)如图4,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC平面BED,FB=a5(1)证明:EBFD(2)求点B到平面FED的距离.(1)证明:点E为弧AC的中点19.(本题满分12分)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:...