2012年辽宁高考理科数学试题及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则为(A){5,8}(B){7,9}(C){0,1,3}(D){2,4,6}【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以,所以为{7,9}。故选B【解析二】集合为即为在全集U中去掉集合A和集合B中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。采用解析二能够更快地得到答案。(2)复数(A)(B)(C)(D)【答案】A【解析】,故选A【点评】本题主要考查复数代数形式的运算,属于容易题。复数的运算要做到细心准确。(3)已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是(A)a∥b(B)a⊥b(C){0,1,3}(D)a+b=ab【答案】B【解析一】由|a+b|=|ab|,平方可得ab=0,所以a⊥b,故选B【解析二】根据向量加法、减法的几何意义可知|a+b|与|ab|分别为以向量a,b为邻边的平行四边形的两条对角线的长,因为|a+b|=|ab|,所以该平行四边形为矩形,所以a⊥b,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解。(4)已知命题p:x1,x2R,(f(x2)f(x1))(x2x1)≥0,则p是(A)x1,x2R,(f(x2)f(x1))(x2x1)≤0(B)x1,x2R,(f(x2)f(x1))(x2x1)≤0(C)x1,x2R,(f(x2)f(x1))(x2x1)<0(D)x1,x2R,(f(x2)f(x1))(x2x1)<0【答案】C【解析】命题p为全称命题,所以其否定p应是特称命题,又(f(x2)f(x1))(x2x1)≥0否定为(f(x2)f(x1))(x2x1)<0,故选C【点评】本题主要考查含有量词的命题的否定,属于容易题。(5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3!(B)3×(3!)3(C)(3!)4(D)9!【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法。因此不同的坐法种数为,答案为C【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。(6)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=(A)58(B)88(C)143(D)176【答案】B【解析】在等差数列中,,答案为B【点评】本题主要考查等差数列的通项公式、性质及其前n项和公式,同时考查运算求解能力,属于中档题。解答时利用等差数列的性质快速又准确。(7)已知,(0,π),则=(A)1(B)(C)(D)1【答案】A【解析一】,故选A【解析二】,故选A【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。(8)设变量x,y满足则的最大值为(A)20(B)35(C)45(D)55【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x+3y最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。(9)执行如图所示的程序框图,则输出的S的值是(A)1(B)(C)(D)4【答案】D【解析】根据程序框图可计算得由此可知S的值呈周期出现,其周期为4,输出时因此输出的值与时相同,故选D【点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力,属于中档题。此类题目需要通过计算确定出周期(如果数值较少也可直接算出结果),再根据周期确定最后的结果。(10)在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为(A)(B)(C)(D)【...