2010年高考浙江卷理科数学试题及答案源头学子http://www.wxckt.cn特级教师王新敞wxckt@126.com选择题部分(共50分)参考公式:如果事件A、B互斥,那么柱体的体积公式P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么其中S表示柱体的底面积,表示柱体的高P(A·B)=P(A)·P(B)锥体的体积公式如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率其中S表示锥体的底面积,表示锥体的高球的表面积公式台体的体积公式球的体积公式其中S1,S2分别表示台体的上、下底面积表示台体的高其中R表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设(A)(B)(C)(D)(2)某程序框图如图所示,若输出的S=57,则判断框内为(A)(B)(C)(D)(3)设为等比数列的前项和,,则(A)11(B)5(C)-8(D)-11(4)设,则“”是“”的(A)充分而不必不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)对任意复数为虚数单位,则下列结论正确的是(A)(B)(C)(D)(6)设是两条不同的直线,是一个平面,则下列命题正确的是(A)若(B)若(C)若(D)若(7)若实数满足不等式组且的最大值为9,则实数(A)-2(B)-1(C)1(D)2(8)设F1,F2分别为双曲线的左、右焦点。若在双曲线右支上存在点P,满足,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲的渐近线方程为(A)(B)(C)(D)(9)设函数,则在下列区间中函数不存在零点的是(A)[-4,-2](B)[-2,0](C)[0,2](D)[2,4](10)设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是(A)4(B)6(C)8(D)10二、填空题:本大题共7小题,每小题4分,共28分。(11)函数的最小正周期是。(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3.(13)设抛物线的焦点为F,点。若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为。(14)设=,将的最小值记为,则其。(15)设为实数,首项为,公差为的等差数列的前项和为,满足则的取值范围是。(16)已知平面向量满足的夹角为120°则。(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下午不测“台阶,其余项目上、下午都各测试一人则不同的安排方式共有种(用数字作答)。三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.(18)(本题满分14分)在中,角A、B、C所对的边分别为a,b,c,已知(I)求的值;(II)当a=2,时,求b及c的长.(19)(本题满分14分)如图,一个小球从M处投入,通过管道自上面下落到A或B或C,已知小球从每个叉口落入左右两个管道的可能性是相等的。某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖.(I)已知获得1,2,3等奖的折扣率分别为50%,70%,90%,记随机变量为获得等奖的折扣率,求随机变量的分布列及数学期望(II)若有3人次(投入1球为1人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求P().(20)(本题满分15分)如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=沿直线EF将翻折成使平面平面BEF.(I)求二面角的余弦值;(II)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与重合,求线段FM的长.ABCDA'EFMN(21)(本题满分15分)已知,直线椭圆分别为椭圆C的左、右焦点.(I)当直线过右焦点F2时,求直线的方程;(II)设直线与椭圆C交于A,B两点,,的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.(22)(本题满分14分)已知a是给定的实常数,设函数是的一个极大值点.(I)求b的取值范围;(II)设是的3个极值点,问是否存在实数b,可找到,使得的某种排列(其中)依次成等差数列?若存在,示所有的b及相应的若不存在,说明理由.ABoyx参考答案一、选择题:本题考查基本...