2016年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁AB=()A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}2.(5分)若z=4+3i,则=()A.1B.﹣1C.+iD.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.6.(5分)若tanθ=,则cos2θ=()A.B.C.D.7.(5分)已知a=,b=,c=,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.69.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8111.(5分)在封闭的直三棱柱ABCA﹣1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y5﹣的最小值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=.16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=ex1﹣﹣x﹣,则曲线y=f(x)在点(1,2)处的切线方程是.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{an}满足a1=1,an2﹣(2an+11﹣)an﹣2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码17﹣分别对应年份20082014﹣.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥PABCD﹣中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体NBCM﹣的体积.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=lnxx﹣+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c1﹣)x>cx.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方...