免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com7.4.2超几何分布课程标准课标解读1.理解超几何分布概率模型的特点,理解超几何分布与古典概型之间的关系;2.根据超几何分布概率模型的特点,会求超几何概型的分布列、期望、方差;3.在实际问题中能用超几何概型解决实际问题.通过本节课的学习,能解决数学中的超几何概率的相关问题,能建立超几何概型解决实际问题.知识点1超几何分布1.定义:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,即如果随机变量X的分布列具免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com有下表形式X01…mP…则称随机变量X服从超几何分布.2.均值:若X服从参数为N,M,n的超几何分布,则E(X)=.3.对超几何分布的理解(1)在超几何分布的模型中,“任取件”应理解为“不放回地一次取一件,连续取件”.如果是有放回地抽取,就变成了重伯努利试验,这时概率分布是二项分布.所以两个分布的区别就在于是否为有放回地抽取.(2)若随机变量满足:试验是不放回地抽取次;随机变量表示抽到两类中其中一类物品的件数.则该随机变量服从超几何分布.(3)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,超几发布的特征是:①考察对象分两类;②已知各类对象的个数;从中抽取若干个个体,考查某类个体数③X的概率分布超几何分布主要用于抽检产品,摸不同类别的小球概率模型,其实质是古典概型.【即学即练1】下列问题中,哪些属于超几何分布问题,说明理由.(1)抛掷三枚骰子,所得向上的数是6的骰子的个数记为X,求X的分布列;(2)有一批种子的发芽率为70%,任取10颗种子做发芽实验,把实验中发芽的种子的个数记为X,求X的分布列;(3)盒子中有红球3只,黄球4只,蓝球5只,任取3只球,把不是红色的球的个数记为X,求X的分布列;(4)某班级有男生25人,女生20人.选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X,求X的分布列;(5)现有100台平板电脑未经检测,抽取10台送检,把检验结果为不合格的平板电脑的个数记为X,求X的分布列.【即学即练2】现有来自甲、乙两班学生共7名,从中任选2名都是甲班的概率为.(1)求7名学生中甲班的学生数;(2)设所选2名学生中甲班的学生数为ξ,求ξ≥1的概率.【即学即练3】有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数的均值是()免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.comA.nB.C.D.【即学即练4】某校高一,高二年级的学生参加书法比赛集训,高一年级推荐了4名男生,2名女生,高二年级推荐了3名男生,5名女生,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队参加市上比赛.(1)求高一恰好有1名学生入选代表队的概率;(2)正式比赛时,从代表队的6名队员中随机抽取2人参赛,设表示参赛的男生人数,求的分布列和数学期望知识点2超几何分布和二项分布的区别和联系(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复);(3)当总体的容量非常大时,超几何分布近似于二项分布.注:(1)区别由古典概型得出超几何分布,由伯努利试验得出二项分布.这两个分布的关系是,假设一批产品共有件,其中有件次品.从件产品中随机抽取件,用表示抽取的件产品中的次品数,若采用有放回抽样的方法抽取,则随机变量服从二项分布,即(其中)若采用不放回抽样的方法抽取,则随机变量服从超几何分布.超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”.超几何分布的概率计算是古典概型问题,二项分布的概率计算是相互独立事件的概率问题.(2)联系二项分布和超几何分布都可以描述随机抽取件产品中次品数的分布规律,并且二者的均值相同.每次试验只有两种可能的结果:成功或失败.当总数很大而抽样数不太大时,不放回抽样可以认为是有放回抽样,即对于不放回抽样,当远远小于时,每抽取一次后,对的影响很小,...