免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com7.5正态分布课程标准课标解读1.通过误差模型初步了解服从正态分布的随机变量的特点.2.并能通过具体的实例,借助频率直方图的几何直观性,了解正态分布的特征,了解正态密度函数的性质.3.了解正态分布的均值、方差及含义.4.了解原则,能通过具体的实例求会求指定区间的概率,以及解决简单的正态分布问题.通过本节课的学习,要求在了解正态分布的含义基础上,能解决与正态分布相关的问题,根据正态密度曲线的对称性,增减性,求特定区间的概率,相应的参数及解决简单的正态分布的应用问题.知识点1正态曲线与正态分布1.连续型随机变量免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com除了离散型随机变量外,还有大量问题中的随机变量不是离散型的,它们的取值往往充满某个区间甚至整个实轴,但取一点的概率为0,我们称这类随机变量为连续型随机变量.2.正态的曲线的定义我们称f(x)=,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称其图象为正态分布密度曲线,简称正态曲线.3.正态分布的定义若随机变量X的概率密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X≤b)为区域B的面积.注:1、正态曲线f(x)=,x∈R中的参数μ,σ有何意义?μ可取任意实数,表示平均水平的特征数,E(X)=μ;σ>0表示标准差,D(X)=σ2.一个正态密度函数由μ,σ唯一确定,π和e为常数,x为自变量,x∈R.2、若随机变量X~N(μ,σ2),则X是离散型随机变量吗?若X~N(μ,σ2),则X不是离散型随机变量,由正态分布的定义:P(a<X≤b)为区域B的面积,X可取(a,b]内的任何值,故X不是离散型随机变量,它是连续型随机变量.知识点2正态曲线的特点1.对∀x∈R,f(x)>0,它的图象在x轴的上方.2.曲线与x轴之间的面积为1.3.曲线是单峰的,它关于直线x=μ对称.4.曲线在x=μ处达到峰值.5.当|x|无限增大时,曲线无限接近x轴.6.当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.7.当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com【即学即练1】已知随机变量服从正态分布,其正态曲线如图所示,则总体的均值μ=,方差σ2=.【解析】从给出的正态曲线可知,该正态曲线关于直线x=20对称,最大值是,所以μ=20,=,解得σ=,因此总体的均值μ=20,方差σ2=()2=2.【即学即练2】【多选】一次教学质量检测中,甲、乙、丙三科考试成绩的正态分布密度曲线如图所示,下列说法中不正确的是()A.甲科总体的标准差最小B.丙科总体的平均数最小C.乙科总体的标准差及平均数都比甲小,比丙大D.甲、乙、丙总体的平均数不相同【解析】由题中图象可知三科总体的平均数(均值)相等,由正态分布密度曲线的性质,可知σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”,故三科总体的标准差从小到大依次为甲、乙、丙.故选BCD【即学即练3】在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现在已知该班同学中成绩在80~85分的有17人,该班成绩在90分以上的同学有多少人?【解析】 成绩服从正态分布N(80,52),∴μ=80,σ=5,则μ-σ=75,μ+σ=85.∴成绩在[75,85]内的同学占全班同学的68.27%,成绩在[80,85]内的同学占全班同学的34.135%.设该班有x名同学,则x×34.135%=17,解得x≈50.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com μ-2σ=80-10=70,μ+2σ=80+10=90,∴成绩在[70,90]内的同学占全班同学的95.45%,成绩在90分以上的同学占全班同学的2.275%.即有50×2.275%≈1(人),即成绩在90分以上的仅有1人.知识点3正态总体在三个特殊区间内取值的概率值及3σ原则P(μ-σ≤X≤μ+σ)≈0.6827...