免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com6.1分类加法计数原理与分步乘法计数原理课程标准课标解读熟练掌握两个计数原理,并能灵活应用两个计数原理解决数学与生活中的计数问题,理解两个计数原理的区别与联系,掌握分类与分步的计数原则及分类标准.通过本节课的学习,要求理解与掌握两个计数原理的计数方法,能应用两个计数原理解决一些简单的实际问题.知识点1分类加法计数原理基本形式:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.一般形式:完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com注:应用分类加法计数原理应遵循的两原则(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,且只能属于某一类即标准明确,不重不漏.【即学即练1】某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有()A.24种B.9种C.3种D.26种【解析】不同的杂志本数为4+3+2=9,从其中任选一本阅读,共有9种选法.故选B【即学即练2】某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班302050高三(2)班303060高三(3)班352055(1)从三个班中任选1名学生担任学生会主席,有多少种不同的选法?(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,有多少种不同的选法?【解析】(1)从三个班中任选1名学生担任学生会主席,共有三类不同的方案.第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计算原理知,从三个班中任选1名学生担任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,共有三类不同的方案.第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担任学生会生活部部长,共有30+30+20=80(种)不同的选法.知识点2分步乘法计数原理免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com基本形式:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.一般形式:完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法注:1、如何区分“完成一件事”是分类还是分步?区分“完成一件事”是分类还是分步,关键看一步能否完成这件事,若能完成,则是分类,否则,是分步.2、应用分步乘法计数原理解题的一般思路【即学即练3】已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是()A.1B.3C.6D.9【解析】这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.故选D【即学即练4】已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M).问:(1)P(a,b)可表示平面上多少个不同的点?(2)P(a,b)可表示平面上多少个第二象限的点?【解析】(1)确定平面上的点P(a,b)可分两步完成:第一步,确定a的值,共有6种方法;第二步,确定b的值,也有6种方法.根据分步乘法计数原理,得到平面上的点的个数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步,确定a,...