免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com拓展二:数列求和方法归纳知识点1公式法公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.①等差数列的前n项和公式:Sn==na1+d.②等比数列的前n项和公式:Sn=③数列前n项和重要公式:(1)1nkk123n2)1(nn(2)1(21)nkk13521n2n(3)31nkk2333)1(2121nnn免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(4)21nkk)12)(1(613212222nnnn(5)等差数列中,mnmnSSSmnd;(6)等比数列中,nmmnnmmnSSqSSqS.知识点2分组转化法有一类数列{}nnab,它既不是等差数列,也不是等比数列,但是数列{},{}nnab是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组转化法求{an}的前n项和.注:①形如an=,用分组求和法,分别求和而后相加减②形如an=,用分组求和法,分别求和而后相加减形如③an=,用分组求和法,分别求和而后相加减(2)通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组转化法求和.注:(1)分奇偶各自新数列求和(2)要注意处理好奇偶数列对应的项:①可构建新数列;②可“跳项”求和(3)正负相间求和:①奇偶项正负相间型求和,可以两项结合构成“常数数列”。②如果需要讨论奇偶,一般情况下,先求偶,再求奇。求奇时候,直接代入偶数项公式,再加上最后的奇数项通项。注:在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5050.知识点3倒序相加法如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n项和公式的推导便使用了此法.用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com注:倒序求和,多是具有中心对称的知识点4裂项相消法裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项在利用裂项相消求和时应注意:善于识别裂项类型(1)在把通项裂开后,是否恰好能利用相应的两项之差,相应的项抵消后是否只剩下第一项和最后一项,或者只剩下前边两项和后边两项,有时抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,或者前面剩几项,后面也剩几项;(2)对于不能由等差数列,等比数列的前n项和公式直接求和问题,一般需要将数列的结构进行合理的拆分,将通项裂项后,有时需要调整前面的系数,使裂开的两项之差或系数之积与原通项相等.转化成某个新的等差或者等比数列进行求和。应用公式时,要保证公式的准确性,区分是等差还是等比数列的通项还是前n项和公式。(3)使用裂项法求和时,要注意正负相消时消去了哪些项保留了哪些项,切不可漏写末被消去的项,末被消去的项前后对称的特点,漏掉的系数裂项过程中易出现丢项或者多项的错误,造成计算结果上的错误,实质上也是造成正负相消是此法的根源目的。(4)常见的裂项技巧①等差型(1)(2)(3)(4)免费小学、初中、高中各种试卷真题知识归纳等下载h...