免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com5.3.2.1函数的极值课程标准课标解读1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.4.能根据极值点与极值的情况求参数范围.5.会利用极值解决方程的根与函数图象的交点个数问题.通过本节课的学习要求会求函数的极值、极值点;能解决与极值点相关的参数问题;并能利用极值解决方程的根与函数的交点问题.知识点1极值点与极值的概念1.极小值点与极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a的免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com左侧f′(x)<0,右侧f′(x)>0,则把a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.3.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.注意点:(1)极值点不是点;(2)极值是函数的局部性质;(3)函数的极值不唯一;(4)极大值与极小值两者的大小不确定;(5)极值点出现在区间的内部,端点不能是极值点;(6)若f′(x0)=0,则x0不一定是极值点,即f′(x0)=0是f(x)在x=x0处取到极值的必要不充分条件,函数y=f′(x)的变号零点,才是函数的极值点.【即学即练1】关于函数的极值,下列说法正确的是()A.导数为零的点一定是函数的极值点B.函数的极小值一定小于它的极大值C.一个函数在它的定义域内最多只有一个极大值和一个极小值D.若一个函数在某个区间内有极值,则这个函数在该区间内不是单调函数【答案】D【分析】利用特例法可判断A的正误;根据极值的定义可判断BC选项的正误;根据函数的极值点与单调性的关系可判断D选项的正误.【详解】对于A选项,取,则,,当时,,故不是函数的极值点,故A不正确;极值是函数的局部性质,极大值与极小值之间一般来说没有大小关系,故B不正确;一个函数在它的定义域内可能有多个极大值和极小值,故C不正确;若一个函数在某个区间内有极值,则这个函数在该区间内不是单调函数,D正确.故选:D.【即学即练2】已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)在区间(a,b)内的极小值点的个数为()A.1B.2C.3D.4【解析】由图象,设f′(x)与x轴负半轴的两个交点的横坐标分别为c,d,其中c<d,免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com知在(-∞,c),(d,b)上f′(x)≥0,所以此时函数f(x)在(-∞,c),(d,b)上单调递增,在(c,d)上,f′(x)<0,此时f(x)在(c,d)上单调递减,所以x=c时,函数取得极大值,x=d时,函数取得极小值.则函数y=f(x)的极小值点的个数为1.故选A【即学即练3】函数f(x)的定义域为开区间(a,b),其导函数在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极大值点有()A.1个B.2个C.3个D.4个【答案】B【解析】依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x<b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值.故选:B知识点2求函数的极值1.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x);(2)求方程f′(x)=0的根;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(3)列表;(4)利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.注:可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同...