免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com5.3.2.2函数的最大(小)值课程标准课标解读1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.3.理解极值与最值的关系,并能利用其求参数的范围.4.能利用导数解决一些简单的恒成立问题.通过本节课的学习,要求会求函数在局部区间的最大(小)值,能利用函数的导数解决恒成立问题与存在性问题.知识点1函数最值的定义(1)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)对于函数f(x),给定区间I,若对任意x∈I,存在x0∈I,使得f(x)≥f(x0),则称f(x0)为函数f(x)在区间I上免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com的最小值;若对任意x∈I,存在x0∈I,使得f(x)≤f(x0),则称f(x0)为函数f(x)在区间I上的最大值.(3)一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.注意点:(1)开区间不一定有最值,闭区间上的连续函数一定有最值;(2)函数f(x)在闭区间[a,b]上连续是f(x)在闭区间[a,b]上有最大值和最小值的充分不必要条件.【即学即练1】如图是函数y=f(x)在区间[a,b]上的图象,写出函数的极大值、极小值、最大值和最小值.【解析】由题图可知,y=f(x)在x1,x3处取得极小值,在x2处取得极大值,所以极小值为f(x1),f(x3),极大值为f(x2);比较极值和端点值可知函数的最小值是f(x3),最大值在b处取得,最大值为f(b).【即学即练2】设f(x)是区间[a,b]上的连续函数,且在(a,b)内可导,则下列结论中正确的是()A.f(x)的极值点一定是最值点B.f(x)的最值点一定是极值点C.f(x)在区间[a,b]上可能没有极值点D.f(x)在区间[a,b]上可能没有最值点【解析】根据函数的极值与最值的概念知,f(x)的极值点不一定是最值点,f(x)的最值点不一定是极值点.可能是区间的端点,连续可导函数在闭区间上一定有最值,所以选项A,B,D都不正确,若函数f(x)在区间[a,b]上单调,则函数f(x)在区间[a,b]上没有极值点,所以C正确.故选C【即学即练3】下列结论正确的是()A.若f(x)在[a,b]上有极大值,则极大值一定是[a,b]上的最大值B.若f(x)在[a,b]上有极小值,则极小值一定是[a,b]上的最小值C.若f(x)在[a,b]上有极大值,则极小值一定是在x=a和x=b处取得D.若f(x)在[a,b]上连续,则f(x)在[a,b]上存在最大值和最小值【解析】函数f(x)在[a,b]上的极值不一定是最值,最值也不一定是极值,极值一定不会在端点处取得,而在[a,b]上一定存在最大值和最小值.故选D【即学即练4】已知函数在区间上可导,则函数“在区间上有最小值是存在”“免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com,满足的”A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】为开区间最小值点一定是极小值点极小值点处的导数值为充分性成立当,时,,结合幂函数图象知无最小值,必要性不成立函数“在区间上有最小值是存在”“,满足的充分不必要条件”故选:知识点2用导数求函数f(x)最值的基本方法(1)求导函数:求函数f(x)的导函数f′(x);(2)求极值嫌疑点:即f′(x)不存在的点和f′(x)=0的点;(3)列表:依极值嫌疑点将函数的定义域分成若干个子区间,列出f′(x)与f(x)随x变化的一览表;(4)求极值:依(3)的表中所反应的相关信息,求出f(x)的极值点和极值;(5)求区间端点的函数值;(6)求最值:比较极值嫌疑点和区间端点的函数值后,得出函数f(x)在其定义域内的最大值和最小值.【即学即练5】求下列函数的最值:(1)f(x)=2x3-12x,x∈[-2,3];(2)f(x)=x+sinx,x∈[0,2π].【解析】(1)因为f(x)=2x3-12x,x∈[-2,3],所以f′(x)=6x2-12=6(x+)(x-),令f′(x)=0,解得x=-或x=.因为f(-2)=8,f(3)=18,f()=-8,f(-)=8,所以当x=时,f(x)取得最小值-8;当x=3时,f(x)取得最大值18.(2)f′(x)=+cosx,令f′...