免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com2.2直线的方程课程标准核心素养根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.数学抽象直观想象知识点1直线方程的点斜式、斜截式名称条件方程图形免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com点斜式直线l过定点P(x0,y0),斜率为ky-y0=k(x-x0)斜截式直线l的斜率为k,且与y轴的交点为(0,b)(直线l与y轴的交点(0,b)的纵坐标b叫做直线l在y轴上的截距)y=kx+b注:1.直线的点斜式及斜截式方程适用条件是什么?斜率存在及已知点(或直线在y轴上的截距).2.经过点P0(x0,y0)的直线有无数条,可以分为两类:(1)斜率存在的直线,方程为y-y0=k(x-x0);(2)斜率不存在的直线,方程为x-x0=0,即x=x0.3.当直线与x轴平行或重合时,方程可简写为y=y0.特别地,x轴的方程是y=0;当直线与y轴平行或重合时,不能应用点斜式方程.此时可将方程写成x=x0.特别地,y轴的方程是x=0.4.直线的斜截式y=kx+b是直线的点斜式y-y0=k(x-x0)的特例.如:直线l的斜率为k且过点(0,b),该直线方程为y=kx+b.5.纵截距不是距离,它是直线与y轴交点的纵坐标,所以可取一切实数,即可为正数、负数或零.6.斜截式方程与一次函数的解析式相同,都是y=kx+b的形式,但有区别:当k≠0时,y=kx+b为一次函数;当k=0时,y=b,不是一次函数.故一次函数y=kx+b(k≠0)一定可看成一条直线的斜截式方程.【即学即练1】方程y=k(x-2)表示()A.通过点(-2,0)的所有直线B.通过点(2,0)的所有直线C.通过点(2,0)且不垂直于x轴的所有直线D.通过点(2,0)且除去x轴的所有直线【解析】易验证直线通过点(2,0),又直线斜率存在,故直线不垂直于x轴.故选C【即学即练2】已知直线的方程是x+y=1,则斜率k=________.【解析】由x+y=1得y=-x+1,则k=-1.【即学即练3】在y轴上的截距为2,且与直线y=-3x-4平行的直线的斜截式方程为________.【解析】 直线y=-3x-4的斜率为-3,所求直线与此直线平行,∴斜率为-3,又截距为2,∴由斜截式方程可得y=-3x+2.【即学即练4】已知直线l的方程为y+=(x-1),则l在y轴上的截距为()A.9B.-9C.D.-免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com【解析】由y+=(x-1),得y=x-9,∴l在y轴上的截距为-9.故选B【即学即练5】(多选)给出下列四个结论,正确的是()A.方程k=与方程y-2=k(x+1)可表示同一直线B.直线l过点P(x1,y1),倾斜角为90°,则其方程是x=x1C.直线l过点P(x1,y1),斜率为0,则其方程是y=y1D.所有的直线都有点斜式和斜截式方程【解析】A不正确,方程k=不含点(-1,2);B正确;C正确;D只有k存在时成立.故选BC【即学即练6】求满足下列条件的m的值.(1)直线l1:y=-x+1与直线l2:y=(m2-2)x+2m平行;(2)直线l1:y=-2x+3与直线l2:y=(2m-1)x-5垂直.【解析】(1) l1∥l2,∴两直线斜率相等.∴m2-2=-1且2m≠1,∴m=±1.(2) l1⊥l2,∴2m-1=.∴m=.知识点2直线的两点式与截距式方程两点式截距式条件P1(x1,y1)和P2(x2,y2)其中x1≠x2,y1≠y2在x轴上截距a,在y轴上截距b图形方程=+=1适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线注:(1)两点式方程①利用两点式求直线方程必须满足x1≠x2且y1≠y2,即直线不垂直于坐标轴.(即:当经过两点(x1,y1),(x2,y2)的直线斜率不存在(x1=x2)或斜率为0(y1=y2)时,不能用两点式方程表示.)②两点式方程与这两个点的顺序无关.③方程中等号两边表达式中分子之比等于分母之比,也就是同一条直线的斜率相等.(2)截距式方程①如果已知直线在两坐标轴上的截距,可以直接代入截距式求直线的方程.②将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图.③与坐标轴平行和过原点的直线都不能用截距式表示.④过原点的直线的横、纵截距都为零.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com【...