免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com3.3.2抛物线的简单几何性质课程标准核心素养1.了解抛物线的几何图形及简单几何性质.2.通过抛物线方程的学习,进一步体会数形结合的思想,了解抛物线的简单应用.直观想象数学运算知识点1抛物线的简单几何性质类型y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com图象性质焦点FFFF准线x=-x=y=-y=范围x≥0,y∈Rx≤0,y∈Rx∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点O(0,0)离心率e=1开口方向向右向左向上向下注:1.范围当x>0时,抛物线y2=2px(p>0)在y轴的右侧,开口向右,这条抛物线上的任意一点M的坐标(x,y)的横坐标满足不等式x≥0;当x的值增大时,|y|的值也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2.对称性观察图象,不难发现,抛物线y2=2px(p>0)关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴.3.顶点抛物线和它的轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点(0,0).4.离心率抛物线上的点M到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e表示,e=1.5、只有焦点在坐标轴上,顶点是原点的抛物线的方程才是标准方程.6、影响抛物线开口大小的量是参数p,p值越大,抛物线的开口越大,反之,开口越小.7、抛物线的标准方程与对称性、焦点位置的关系y2=ax一次项为x项,x轴为对称轴a>0时,焦点在x轴正半轴上,开口向右a<0时,焦点在x轴负半轴上,开口向左x2=ay一次项为y项,y轴为对称轴a>0时,焦点在y轴正半轴上,开口向上a<0时,焦点在y轴负半轴上,开口向下8、抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴,抛物线上任意一点,则;(2)焦点在轴负半轴,抛物线上任意一点,则;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(3)焦点在轴正半轴,抛物线上任意一点,则;(4)焦点在轴负半轴,抛物线上任意一点,则.【即学即练1】对抛物线y=4x2,下列描述正确的是()A.开口向上,焦点为(0,1)B.开口向上,焦点为C.开口向右,焦点为(1,0)D.开口向右,焦点为【即学即练2】顶点在原点,对称轴是y轴,并且顶点与焦点的距离为3的抛物线的标准方程为()A.x2=±3yB.y2=±6xC.x2=±12yD.y2=±12x【即学即练3】设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A.(6,+∞)B.[6,+∞)C.(3,+∞)D.[3,+∞)知识点2直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.【即学即练4】已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C:只有一个公共点;有两个公共点;没有公共点.【即学即练5】已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.知识点3弦长问题免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x1·x2=.(2)y1·y2=-p2.(3)|AB|=x1+x2+p=(α是直线AB的倾斜角).(4)+=为定值(F是抛物线的焦点).(5)求弦长问题的方法①一般弦长:|AB|=|x1-x2|,或|AB|=|y1-y2|.②焦点弦长:设过焦点的弦的端点为A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.【即学即练6】已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线...