免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com1.3空间向量及其运算的坐标表示课程标准课标解读理解和掌握空间向量的坐标表示及意义,会用向量的坐标表达空间向量的相关运算.会求空间向量的夹角、长度以及有关平行、垂直的证明.利用空间向量的坐标表示,将形与数有机结合,并能进行相关的计算与证明是学习空间向量及运算的关键.也是解决空间几何的重要手段与工具.知识点1空间直角坐标系1.空间直角坐标系(1)空间直角坐标系:在空间选定一点O和一个单位正交基底{i,j,k},以O为原点,分别以i,j,k的方向为正方向,以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz.(2)相关概念:O叫做原点,i,j,k都叫做坐标向量,通过每两条坐标轴的平面叫做坐标平面,分别称为Oxy平面、Oyz平面、Ozx平面,它们把空间分成八个部分.注意点:(1)基向量:|i|=|j|=|k|=1,i·j=i·k=j·k=0.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(2)画空间直角坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°.(3)建立的坐标系均为右手直角坐标系.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标、向量的坐标(1)空间点的坐标在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,对应一个向量OA,且点A的位置由向量OA唯一确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使OA=xi+yj+zk.在单位正交基底{i,j,k}下与向量OA对应的有序实数组(x,y,z),叫做点A在空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.注:空间直角坐标系中坐标轴、坐标平面上的点的坐标特点点的位置x轴上y轴上z轴上坐标的形式(x,0,0)(0,y,0)(0,0,z)点的位置Oxy平面内Oyz平面内Ozx平面内坐标的形式(x,y,0)(0,y,z)(x,0,z)(2)空间点的对称问题①空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用②“关于谁对称,谁保持不变,其余坐标相反”这个结论.(3)空间向量的坐标向量的坐标:在空间直角坐标系Oxyz中,给定向量a,作OA=a,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使a=xi+yj+zk.有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,可简记作a=(x,y,z).【即学即练1】设{i,j,k}是空间向量的一个单位正交基底,则向量a=3i+2j-k,b=-2i+4j+2k的坐标分别是________.答案:(3,2,-1),(-2,4,2)【即学即练2】画一个正方体ABCD-A1B1C1D1,若以A为坐标原点,以棱AB,AD,AA1所在的直线分别为x轴、y轴、z轴,取正方体的棱长为单位长度,建立空间直角坐标系,则顶点①A,D1的坐标分别为________________;棱②C1C中点的坐标为________;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com正方形③AA1B1B对角线的交点的坐标为________.答案①(0,0,0),(0,1,1)②③【即学即练3】在空间直角坐标系中,已知点P(-2,1,4).(1)求点P关于x轴对称的点的坐标;(2)求点P关于Oxy平面对称的点的坐标;(3)求点P关于点M(2,-1,-4)对称的点的坐标.【解析】(1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点坐标为P1(-2,-1,-4).(2)由点P关于Oxy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点坐标为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3的坐标为(6,-3,-12).【即学即练4】已知、,设点、在平面上的射影分别为、,则向量的坐标为________.【解析】点、在平面上的射影分别为、,向量∴的坐标为.故答案为:.【即学即练5】已知在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=4,...