免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com1.4充分条件与必要条件【知识点梳理】知识点一:充分条件与必要条件充要条件的概念符号与的含义“若,则”为真命题,记作:;“若,则”为假命题,记作:.充分条件、必要条件与充要条件①若,称是的充分条件,是的必要条件.②如果既有,又有,就记作,这时是的充分必要条件,称是的充要条件.知识点诠释:对的理解:指当成立时,一定成立,即由通过推理可以得到.①“若,则”为真命题;②是的充分条件;③是的必要条件以上三种形式均为“”这一逻辑关系的表达.知识点二:充分条件、必要条件与充要条件的判断从逻辑推理关系看命题“若,则”,其条件p与结论q之间的逻辑关系①若,但,则是的充分不必要条件,是的必要不充分条件;②若,但,则是的必要不充分条件,是的充分不必要条件;③若,且,即,则、互为充要条件;④若,且,则是的既不充分也不必要条件.从集合与集合间的关系看若p:x∈A,q:x∈B,①若AB,则是的充分条件,是的必要条件;②若A是B的真子集,则是的充分不必要条件;③若A=B,则、互为充要条件;④若A不是B的子集且B不是A的子集,则是的既不充分也不必要条件.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com记法A={x|p(x)},B={x|q(x)}关系ABBAA=BA⊈B且B⊈A图示结论p是q的充分不必要条件p是q的必要不充分条件p,q互为充要条件p是q的既不充分也不必要条件知识点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪是条件,哪是结论;②尝试用条件推结论,③再尝试用结论推条件,④最后判断条件是结论的什么条件.知识点三:充要条件的证明要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立)知识点诠释:对于命题“若,则”①如果是的充分条件,则原命题“若,则”与其逆否命题“若,则”为真命题;②如果是的必要条件,则其逆命题“若,则”与其否命题“若,则”为真命题;③如果是的充要条件,则四种命题均为真命题.【题型归纳目录】题型一:充分条件与必要条件的判断题型二:根据充分条件求参数取值范围题型三:根据必要条件求参数取值范围题型四:根据充要条件求参数取值范围题型五:充要条件的证明【典型例题】题型一:充分条件与必要条件的判断例1.(2022·湖南·永州市第二中学高一阶段练习)“a<-1”是“方程ax2+2x+1=0至少有一个实数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】【分析】免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com讨论,,可得“方程ax2+2x+1=0至少有一个实数根”等价于“”再根据充分条件、必要条件的定义即可得出结果.【详解】当时,方程即为,解得;当时,,得,;所以“方程ax2+2x+1=0至少有一个实数根”等价于“”“”能推出“方程至少有一个实数根”,反之不成立;所以“”是“方程至少有一个实数根”的充分不必要条件.故选:B.例2.(2022·广东·化州市第三中学高一期末)已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据两个命题中的取值范围,分析是否能得到pq和qp.【详解】若x为自然数,则它必为整数,即p⇒q.但x为整数不一定是自然数,如x=-2,即qp.故p是q的充分不必要条件.故选:A.例3.(2022·上海·上外附中高一期中)“”是关于的不等式的解集为R的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】【分析】取,时可判断充分性;当不等式的解集为R时,分,,讨论可判断必要性.【详解】若,取时,不等式,此时不等式解集为;当时,不等式的解集为,免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com当时,不等式的解集为,当,且时,不等式,所以,若关于的不等式的解集...