免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com2.2基本不等式【知识点梳理】知识点一:基本不等式1.对公式及的理解.(1)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数;(2)取等号“=”的条件在形式上是相同的,都是“当且仅当时取等号”.2.由公式和可以引申出常用的常用结论①(同号);②(异号);③或知识点诠释:可以变形为:,可以变形为:.知识点二:基本不等式的证明方法一:几何面积法如图,在正方形中有四个全等的直角三角形.设直角三角形的两条直角边长为、,那么正方形的边长为.这样,4个直角三角形的面积的和是,正方形的面积为.由于4个直角三角形的面积小于正方形的面积,所以:.当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com得到结论:如果,那么(当且仅当时取等号“=”)特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”)方法二:代数法 ,当时,;当时,.所以,(当且仅当时取等号“=”).知识点诠释:特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”).知识点三:基本不等式的几何意义如图,是圆的直径,点是上的一点,,,过点作交圆于点D,连接、.易证,那么,即.这个圆的半径为,它大于或等于,即,其中当且仅当点与圆心重合,即免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com时,等号成立.知识点诠释:1.在数学中,我们称为的算术平均数,称为的几何平均数.因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.如果把看作是正数的等差中项,看作是正数的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.知识点四:用基本不等式求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等.①一正:函数的解析式中,各项均为正数;②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③三取等:函数的解析式中,含变数的各项均相等,取得最值.知识点诠释:1.两个不等式:与成立的条件是不同的,前者要求a,b都是实数,后者要求a,b都是正数.2.两个不等式:与都是带有等号的不等式,对于“当且仅当……时,取“=”号这句话的含义要有正确的理解.3.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.4.利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③各项能取得相等的值.5.基本不等式在解决实际问题中有广泛的应用,在应用时一般按以下步骤进行:免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com①先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;②建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;③在定义域内,求出函数的最大或最小值;④写出正确答案.【题型归纳目录】题型一:对基本不等式的理解及简单应用题型二:利用基本不等式比较大小题型三:利用基本不等式证明不等式题型四:利用基本不等式求最值1.直接法求最值2.常规凑配法求最值3.消参法求最值4.换元求最值5.“1”的代换求最值6.法7.条件等式求最值题型五:利用基本不等式求解恒成立问题题型六:基本不等式在实际问题中的应用【典型例题】题型一:对基本不等式的理解及简单应用例1.(2022·全国·高一课时练习)若且,则下列不等式中恒成立的是().A.B.C.D.例2.(2022·河南开封·高一阶段练习)若两个正数、满足,则下列各式中恒成立的是().免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.comA.B.C.D.例3.(...