免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com3.2.2奇偶性【知识点梳理】知识点一、函数的奇偶性概念及判断步骤1.函数奇偶性的概念偶函数:若对于定义域内的任意一个,都有,那么称为偶函数.奇函数:若对于定义域内的任意一个,都有,那么称为奇函数.知识点诠释:(1)奇偶性是整体性质;(2)在定义域中,那么在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;(3)的等价形式为:,的等价形式为:;(4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有;(5)若既是奇函数又是偶函数,则必有.2.奇偶函数的图象与性质(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数为偶函数,则它的图象关于轴对称;反之,如果一个函数的图像关于轴对称,则这个函数是偶函数.3.用定义判断函数奇偶性的步骤(1)求函数的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;(2)结合函数的定义域,化简函数的解析式;(3)求,可根据与之间的关系,判断函数的奇偶性.若,则是奇函数;若=,则是偶函数;若,则既不是奇函数,也不是偶函数;若且,则既是奇函数,又是偶函数知识点二、判断函数奇偶性的常用方法(1)定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断与之一是否相等.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(2)验证法:在判断与的关系时,只需验证及是否成立即可.(3)图象法:奇(偶)函数等价于它的图象关于原点(轴)对称.(4)性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.(5)分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断与的关系.首先要特别注意与的范围,然后将它代入相应段的函数表达式中,与对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.知识点三、关于函数奇偶性的常见结论(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数是偶函数函数的图象关于轴对称;函数是奇函数函数的图象关于原点中心对称.(3)若奇函数在处有意义,则有;偶函数必满足.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数的定义域关于原点对称,则函数能表示成一个偶函数与一个奇函数的和的形式.记,,则.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如.对于运算函数有如下结论:奇奇=奇;偶偶=偶;奇偶=非奇非偶;奇奇=偶;奇偶=奇;偶偶=偶.(7)复合函数的奇偶性原来:内偶则偶,两奇为奇.【题型归纳目录】免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com题型一:函数的奇偶性的判断与证明题型二:已知函数的奇偶性求表达式题型三:已知函数的奇偶性求值题型四:已知函数的奇偶性求参数题型五:已知奇函数+M题型六:抽象函数的奇偶性问题题型七:奇偶性与单调性的综合运用题型八:利用函数奇偶性识别图像【典型例题】题型一:函数的奇偶性的判断与证明例1.(2022·陕西·榆林市第十中学高一阶段练习)下列函数是奇函数的是()A.B.C.D.【答案】C【解析】对于A:定义域为,不关于原点对称,所以为非奇非偶函数,故A错误;对于B:定义域为,则,即为偶函数,故B错误;对于C:定义域为,则,故为奇函数,故C正确;对于D:定义...