免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com8.4空间点、直线、平面之间的位置关系【题型归纳目录】题型一:平面的概念及其表示题型二:平面的确定题型三:点线共面题型四:三点共线题型五:三线共点问题题型六:截面问题题型七:直线与直线的位置关系题型八:异面直线所成的角题型九:直线与平面的位置关系题型十:平面与平面的位置关系【知识点梳理】知识点一、平面的基本概念1、平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象.几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.知识点诠释:(1)“平面”是平的(这是区别“平面”与“曲面”的依据);(2)“平面”无厚薄之分;(3)“平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2、平面的画法:通常画平行四边形表示平面.知识点诠释:(1)表示平面的平行四边形,通常把它的锐角画成,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画;3、平面的表示法:(1)用一个希腊字母表示一个平面,如平面、平面、平面等;(2)用表示平面的平行四边形的四个字母表示,如平面;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面或者平面;4、点、直线、平面的位置关系:(1)点A在直线a上,记作;点A在直线a外,记作;(2)点A在平面上,记作;点A在平面外,记作;(3)直线在平面内,记作;直线不在平面内,记作.知识点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1、公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;(2)符号语言表述:,,,;(3)图形语言表述:知识点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”.2、公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面;(2)符号语言表述:、、三点不共线有且只有一个平面,使得,,;(3)图形语言表述:知识点诠释:公理2的作用是确定平面,是把空间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面;②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3、公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;(2)符号语言表述:且;(3)图形语言表述:知识点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.知识点三、点线共面的证明所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1、证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1);②经过不在同一条直线上的三点,有且只有一个平面(公理2及其推论).2、证明点线共面的常用方法:(1)证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内;(2)证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内.知识点四、证明三点共线问题所谓点共线问题就是证明三个或三个以上的点在同—条直线上.1、证明三点共线的依据是公理3:如果两个不重合的平面有一个公共点,那么它们还有其他的...