专题05 巧妙借助复数的几何意义求与模有关的范围与最值问题(解析版).docx本文件免费下载 【共14页】

专题05 巧妙借助复数的几何意义求与模有关的范围与最值问题(解析版).docx
专题05 巧妙借助复数的几何意义求与模有关的范围与最值问题(解析版).docx
专题05 巧妙借助复数的几何意义求与模有关的范围与最值问题(解析版).docx
免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com专题05巧妙借助复数的几何意义求与模有关的范围与最值问题【题型归纳目录】题型一:单模长最值问题题型二:多模长之和差最值问题题型三:模长的范围问题【典型例题】题型一:单模长最值问题例1.(2023·陕西榆林·高二陕西省神木中学校考阶段练习)已知复数为虚数单位)满足,则的最小值为()A.2B.1C.D.4【答案】A【解析】因为,所以复数对应的点的轨迹是以为圆心,为半径的圆,所以.故选:A例2.(2023·全国·高一专题练习)已知复数z满足:,则的最小值是()A.1B.C.D.2【答案】B【解析】由复数模的几何意义知满足的对应的点在以点和为端点的线段的中垂线,的中点为,的最小值就是原点到直线的距离即为,故选:B.例3.(2023·上海闵行·上海市七宝中学校考模拟预测)若,则的最大值与最小值的和为___________.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com【答案】【解析】由几何意义可得:复数表示以()为圆心的半径为1的圆,则.故答案为:例4.(2023春·上海闵行·高一上海市七宝中学校考期末)在中,,为的中点,过点的直线分别交直线、于不同的两点、.设,,复数,则取到的最小值为__.【答案】【解析】在中,因为,所以.又,,所以.因为E为的中点,所以.因为M、E、N三点共线,所以,即,复数,所以,令,故当,取最小值.故答案为:例5.(2023·高一课时练习)已知复数和,i为虚数单位,求的最大值和最小值.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com【解析】复数和,则由,可得则的最大值,最小值例6.(2023·高一课时练习)设复数:满足,求的最大值和最小值.【解析】因为,所以;因为所以,解得;所以的最大值为7,最小值为3.例7.(2023·高一课时练习)已知复数,求为何值时,取得最大值和最小值,并求出最大值和最小值.【解析】. ,∴当时,;当时,.例8.(2023·高一单元测试)已知复数满足,且复数在复平面内的对应点为.(1)确定点的集合构成图形的形状;(2)求的最大值和最小值.【解析】(1)设复数在复平面内的对应点为,则,故点的集合是以点为圆心,2为半径的圆,如下图所示.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(2)设复数在复平面内的对应点为,则,如下图所示,,则的最大值即的最大值是;的最小值即的最小值是.例9.(2023·广东中山·高二中山一中校考)已知复数满足,则的最小值为______.【答案】【解析】,∴在复平面内对应点的轨迹为以原点为圆心,以1为半径的圆,的几何意义为圆上的点到的距离,如图,免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com的最小值为.故答案为:.例10.(2023·上海浦东新·高三校考阶段练习)已知,且,为虚数单位,则的最大值是__.【答案】8【解析】因为且,所以,根据复数模的几何意义,表示以为圆心,3为半径的圆,所以,表示圆上的点和点的距离,因为圆心到点的距离为,,故答案为:例11.(2023春·上海青浦·高一上海市朱家角中学校考期末)若,且,则的最大值是_______.【答案】【解析】,则复平面上表示复数的点在以原点为圆心,1为半径的圆上,表示到点的距离, ,所以=的最大值为.故答案为:.题型二:多模长之和差最值问题例12.著名的费马问题是法国数学家皮埃尔·德费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当的三个内角均小于120°时,则使得的点即为费马点.根据以上材料,若,则的最小值为()A.B.C.D.【答案】B【解析】设,则表示点到三顶点、、的距离之和.依题意结合对称性可知的费马点位于虚轴的负半轴上,且,则.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com此时.故选:B.例13.(2023·高一课时练习)已知复数满足,则的取值范围是______.【答案】【解析】复数满足,表示以原...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中 数学·选择性必修·第一册·北师大版课时作业WORD课时作业(十九).doc
高中 数学·选择性必修·第一册·北师大版课时作业WORD课时作业(十九).doc
免费
0下载
高一数学【新教材精创】8.5.3 平面与平面平行(第1课时)平面与平面平行的判定 练习(1)(解析版).docx
高一数学【新教材精创】8.5.3 平面与平面平行(第1课时)平面与平面平行的判定 练习(1)(解析版).docx
免费
28下载
高中 数学·选择性必修·第二册·(RJ-A版)课时作业(word)课时作业(七).docx
高中 数学·选择性必修·第二册·(RJ-A版)课时作业(word)课时作业(七).docx
免费
0下载
高中 数学·必修第一册(北师大版)课时作业WORD章末质量检测(六).doc
高中 数学·必修第一册(北师大版)课时作业WORD章末质量检测(六).doc
免费
0下载
精品解析:福建省福州市四校联盟2021-2022学年高一下学期期末联考英语试题(含听力)(原卷版).docx
精品解析:福建省福州市四校联盟2021-2022学年高一下学期期末联考英语试题(含听力)(原卷版).docx
免费
18下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】3.6.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】3.6.docx
免费
0下载
江苏省苏锡常镇四市2022~2023学年度高三教学情况调研(一)数学试卷(参考答案).docx
江苏省苏锡常镇四市2022~2023学年度高三教学情况调研(一)数学试卷(参考答案).docx
免费
13下载
高一数学5.4 三角函数的图象和性质(原卷版) (1).docx
高一数学5.4 三角函数的图象和性质(原卷版) (1).docx
免费
15下载
高一数学第五章  5.1  5.1.2  课后课时精练.doc
高一数学第五章 5.1 5.1.2 课后课时精练.doc
免费
21下载
高一数学4.1.2  无理指数幂及其运算  练习(解析版).docx
高一数学4.1.2 无理指数幂及其运算 练习(解析版).docx
免费
10下载
高中 2023二轮专项分层特训卷•数学【新教材】命题点32 利用导数研究不等式.docx
高中 2023二轮专项分层特训卷•数学【新教材】命题点32 利用导数研究不等式.docx
免费
0下载
高中 数学(必修第二册)(BSD版)课时作业(word)课时作业7.doc
高中 数学(必修第二册)(BSD版)课时作业(word)课时作业7.doc
免费
0下载
高中 数学·选择性必修·第二册·湘教版课时作业WORD课时作业(十).docx
高中 数学·选择性必修·第二册·湘教版课时作业WORD课时作业(十).docx
免费
0下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】4.4.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】4.4.docx
免费
0下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】2.12.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】2.12.docx
免费
0下载
高中 数学·选择性必修·第一册·(RJ-B版)课时作业(word)课时作业(十九) 椭圆的标准方程.docx
高中 数学·选择性必修·第一册·(RJ-B版)课时作业(word)课时作业(十九) 椭圆的标准方程.docx
免费
0下载
高一数学2022-2023学年高一下学期第二次月考数学试题(解析版).docx
高一数学2022-2023学年高一下学期第二次月考数学试题(解析版).docx
免费
1下载
高一数学5.8 三角函数综合测试卷(原卷版).docx
高一数学5.8 三角函数综合测试卷(原卷版).docx
免费
5下载
高中 数学·必修第二册(RJ-B)课时作业(word)课时作业  13.docx
高中 数学·必修第二册(RJ-B)课时作业(word)课时作业 13.docx
免费
0下载
高一数学第四章  指数与对数函数-综合检测卷(培优原卷版).docx
高一数学第四章 指数与对数函数-综合检测卷(培优原卷版).docx
免费
13下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群