高一数学同步讲义(A版必修二)专题07 解三角形图形类问题(原卷版).docx本文件免费下载 【共16页】

高一数学同步讲义(A版必修二)专题07 解三角形图形类问题(原卷版).docx
高一数学同步讲义(A版必修二)专题07 解三角形图形类问题(原卷版).docx
高一数学同步讲义(A版必修二)专题07 解三角形图形类问题(原卷版).docx
免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com专题07解三角形图形类问题【方法技巧与总结】解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.【题型归纳目录】题型一:妙用两次正弦定理题型二:两角使用余弦定理题型三:张角定理与等面积法题型四:角平分线问题题型五:中线问题题型六:高问题【典例例题】题型一:妙用两次正弦定理例1.(2022·全国·高三专题练习)如图,在梯形中,,,,.(1)若,求梯形的面积;(2)若,求.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com例2.(2022·河南安阳·模拟预测(理))如图,在平面四边形ABCD中,,,.(1)若,求的面积;(2)若,求BC.例3.(江苏省南京市宁海中学2023届高三下学期4月模拟考试数学试题)在中,内角的对边分别为,,点在边上,满足,且.(1)求证:;(2)求.例4.(2023·湖北武汉·模拟预测)如图,在平面四边形中,,,.(1)当,时,求的面积;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(2)当,时,求.题型二:两角使用余弦定理例5.(2023·湖北·襄阳四中模拟预测)在中,内角A,B,C的对边分别为a,b,c,角A的平分线AD交BC边于点D.(1)证明:,;(2)若,,求的最小值.例6.(2023·湖北武汉·二模)如图,内一点满足.(1)若,求的值;(2)若,求的长.例7.(2021·全国·高考模拟)记是内角,,的对边分别为,,.已知,点在边上,.(1)证明:;(2)若,求.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com题型三:张角定理与等面积法例8.(广东省2023届高三三模数学试题)已知△ABC中,分别为内角的对边,且.(1)求角的大小;(2)设点为上一点,是的角平分线,且,,求的面积.例9.(2023·湖北武汉·模拟预测)在中,设角,,所对的边分别为,,,且(1)求;(2)若为上的点,平分角,且,,求.例10.(2022·黑龙江·哈尔滨三中高三阶段练习(理))在中,角A,B,C的对边分别是a,b,c,且.(1)求角B的大小;(2)若,D为AC边上的一点,,且______,求的面积.①BD是的平分线;②D为线段AC的中点.(从①,②两个条件中任选一个,补充在上面的横线上并作答).题型四:角平分线问题例11.(2022·河南·模拟预测(理))如图,在中,D为边BC的中点,的平分线分别交AB,AD于E,F两点.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(1)证明:;(2)若,,,求DE.例12.(2022·广东佛山·三模)设的内角、、的对边分别为、、,已知,的平分线交于点,且.(1)求;(2)若,求.例13.(2022·山东潍坊·模拟预测)已知的内角、、的对边分别为、、,且的面积为.(1)求;免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com(2)若,的角平分线与边相交于点,延长至点,使得,求.题型五:中线问题例14.(2023·广东佛山·高三期末)中,内角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若边上的中线,求的面积.例15.(2023·全国·模拟预测)在中..(1)求角;(2)若,点是线段的中点,于点,且,求的长.例16.(2023·海南海口·二模)在中,角的对边分别为已知,.(1)求;(2)若,边的中点为,求.题型六:高问题例17.(2023·河南·平顶山市第一高级中学模拟预测(理))在中,角A,B,C所对的边分别为a,b,c,且.免费小学、初中、高中各种试卷真题知识归纳等下...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
高中 数学·选择性必修·第一册·北师大版课时作业WORD课时作业(十九).doc
高中 数学·选择性必修·第一册·北师大版课时作业WORD课时作业(十九).doc
免费
0下载
高一数学【新教材精创】8.5.3 平面与平面平行(第1课时)平面与平面平行的判定 练习(1)(解析版).docx
高一数学【新教材精创】8.5.3 平面与平面平行(第1课时)平面与平面平行的判定 练习(1)(解析版).docx
免费
28下载
高中 数学·选择性必修·第二册·(RJ-A版)课时作业(word)课时作业(七).docx
高中 数学·选择性必修·第二册·(RJ-A版)课时作业(word)课时作业(七).docx
免费
0下载
高中 数学·必修第一册(北师大版)课时作业WORD章末质量检测(六).doc
高中 数学·必修第一册(北师大版)课时作业WORD章末质量检测(六).doc
免费
0下载
精品解析:福建省福州市四校联盟2021-2022学年高一下学期期末联考英语试题(含听力)(原卷版).docx
精品解析:福建省福州市四校联盟2021-2022学年高一下学期期末联考英语试题(含听力)(原卷版).docx
免费
18下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】3.6.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】3.6.docx
免费
0下载
江苏省苏锡常镇四市2022~2023学年度高三教学情况调研(一)数学试卷(参考答案).docx
江苏省苏锡常镇四市2022~2023学年度高三教学情况调研(一)数学试卷(参考答案).docx
免费
13下载
高一数学5.4 三角函数的图象和性质(原卷版) (1).docx
高一数学5.4 三角函数的图象和性质(原卷版) (1).docx
免费
15下载
高一数学第五章  5.1  5.1.2  课后课时精练.doc
高一数学第五章 5.1 5.1.2 课后课时精练.doc
免费
21下载
高一数学4.1.2  无理指数幂及其运算  练习(解析版).docx
高一数学4.1.2 无理指数幂及其运算 练习(解析版).docx
免费
10下载
高中 2023二轮专项分层特训卷•数学【新教材】命题点32 利用导数研究不等式.docx
高中 2023二轮专项分层特训卷•数学【新教材】命题点32 利用导数研究不等式.docx
免费
0下载
高中 数学(必修第二册)(BSD版)课时作业(word)课时作业7.doc
高中 数学(必修第二册)(BSD版)课时作业(word)课时作业7.doc
免费
0下载
高中 数学·选择性必修·第二册·湘教版课时作业WORD课时作业(十).docx
高中 数学·选择性必修·第二册·湘教版课时作业WORD课时作业(十).docx
免费
0下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】4.4.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】4.4.docx
免费
0下载
高中 2023二轮专项分层特训卷•数学·理科【统考版】2.12.docx
高中 2023二轮专项分层特训卷•数学·理科【统考版】2.12.docx
免费
0下载
高中 数学·选择性必修·第一册·(RJ-B版)课时作业(word)课时作业(十九) 椭圆的标准方程.docx
高中 数学·选择性必修·第一册·(RJ-B版)课时作业(word)课时作业(十九) 椭圆的标准方程.docx
免费
0下载
高一数学2022-2023学年高一下学期第二次月考数学试题(解析版).docx
高一数学2022-2023学年高一下学期第二次月考数学试题(解析版).docx
免费
1下载
高一数学5.8 三角函数综合测试卷(原卷版).docx
高一数学5.8 三角函数综合测试卷(原卷版).docx
免费
5下载
高中 数学·必修第二册(RJ-B)课时作业(word)课时作业  13.docx
高中 数学·必修第二册(RJ-B)课时作业(word)课时作业 13.docx
免费
0下载
高一数学第四章  指数与对数函数-综合检测卷(培优原卷版).docx
高一数学第四章 指数与对数函数-综合检测卷(培优原卷版).docx
免费
13下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群