免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com专题08玩转外接球、内切球、棱切球经典问题【题型归纳目录】题型一:正方体、长方体模型题型二:正四面体模型题型三:对棱相等模型题型四:直棱柱模型题型五:直棱锥模型题型六:正棱锥与侧棱相等模型题型七:侧棱为外接球直径模型题型八:共斜边拼接模型题型九:垂面模型题型十:最值模型题型十一:二面角模型题型十二:圆锥圆柱圆台模型题型十三:锥体内切球题型十四:棱切球【方法技巧与总结】技巧总结一:正方体、长方体外接球1、正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2、长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3、补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体可以补形为正方体且正方体的棱长,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1图2图3图4技巧总结二:正四面体外接球如图,设正四面体的的棱长为,将其放入正方体中,则正方体的棱长为,显然正四面体和正方体有相同的外接球.正方体外接球半径为,即正四面体外接球半径为.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com技巧总结三:对棱相等的三棱锥外接球四面体中,,,,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为,则,三式相加可得而显然四面体和长方体有相同的外接球,设外接球半径为,则,所以.技巧总结四:直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)C1B1AEFA1O1OO2BCC1B1AA1O1OO2BCC1B1AEFA1O1OO2BC图1图2图3第一步:确定球心的位置,是的外心,则平面;第二步:算出小圆的半径,(也是圆柱的高);第三步:勾股定理:,解出技巧总结五:直棱锥外接球如图,平面,求外接球半径.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.comADPO1OCB解题步骤:第一步:将画在小圆面上,为小圆直径的一个端点,作小圆的直径,连接,则必过球心;第二步:为的外心,所以平面,算出小圆的半径(三角形的外接圆直径算法:利用正弦定理,得),;第三步:利用勾股定理求三棱锥的外接球半径:①;②.技巧总结六:正棱锥与侧棱相等模型1、正棱锥外接球半径:.hlrDCBA2、侧棱相等模型:如图,的射影是的外心三棱锥的三条侧棱相等三棱锥的底面在圆锥的底上,顶点点也是圆锥的顶点.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.comPAO1OCB解题步骤:第一步:确定球心的位置,取的外心,则三点共线;第二步:先算出小圆的半径,再算出棱锥的高(也是圆锥的高);第三步:勾股定理:,解出.技巧总结七:侧棱为外接球直径模型方法:找球心,然后作底面的垂线,构造直角三角形.技巧总结八:共斜边拼接模型如图,在四面体中,,,此四面体可以看成是由两个共斜边的直角三角形拼接而形成的,为公共的斜边,故以“共斜边拼接模型”命名之.设点为公共斜边的中点,根据直角三角形斜边中线等于斜边的一半的结论可知,,即点到,,,四点的距离相等,故点就是四面体外接球的球心,公共的斜边就是外接球的一条直径.技巧总结九:垂面模型如图1所示为四面体,已知平面平面,其外接球问题的步骤如下:(1)找出和的外接圆圆心,分别记为和.(2)分别过和作平面和平面的垂线,其交点为球心,记为.(3)过作的垂线,垂足记为,连接,则.(4)在四棱锥中,垂直于平面,如图2所示,底面四边形的四个顶点共圆且为该圆的直径.免费小学、初中、高中各种试卷真题知识归纳等下载https://www.doc985.com图1图2技巧总结十:最值模型这类问题是综合性问题,方法较多,常见方法有:导数法,基本不等式法,观察法等技巧总结十一:二面角模型如图1所示为四面体,已知二面角大小为,其外接球问题的步骤如下:(1)找出和的外接圆圆心,分别记为和.(2...