ABCM1M2M3在几何中,平行四边形的判定方法有如下几条:①两组对边互相平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分;⑤两组对角相等。在压轴题中,往往与函数(坐标轴)结合在一起,运用到④⑤的情况较少,更多的是从边的平行、相等角度来得到平行四边形.1、知识内容:已知三点后,其实已经固定了一个三角形(平行四边形的一半),如图.第四个点M则有3种取法,过3个顶点作对边的平行线且取相等长度即可(如图中3个M点).2、解题思路:(1)根据题目条件,求出已知3个点的坐标;(2)用一点及其对边两点的关系,求出一个可能点;(3)更换顶点,求出所有可能的点;(4)根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】如图,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;平行四边形的存在性问题内容分析知识结构模块一:已知三点的平行四边形问题知识精讲例题解析平行四边形的存在性问题平行四边形的存在性问题平行四边形的存在性问题平行四边形的存在性问题平行四边形的存在性问题内容分析内容分析内容分析内容分析内容分析知识结构知识结构知识结构知识结构知识结构模块一:已知三点的平行四边形问题模块一:已知三点的平行四边形问题模块一:已知三点的平行四边形问题模块一:已知三点的平行四边形问题模块一:已知三点的平行四边形问题知识精讲知识精讲知识精讲知识精讲知识精讲例题解析例题解析例题解析例题解析例题解析中考复习2/11(2)点P为抛物线上的一个动点,求使的点P的坐标;(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标.yxODCBA【例2】如图,已知抛物线与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧),点B的坐标为(1,0),tan∠OBC=3.(1)求抛物线的解析式;(2)点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形,若存在,写出点P的坐标;(3)抛物线的对称轴与AC交于点Q,说明以Q为圆心,以OQ为半径的圆与直线BC的关系.OCBAyx中考复习4/11【例3】如图,在平面直角坐标系中,直线y=kx+b分别与x轴负半轴交于点A,与y轴正半轴交于点B,经过点A,点B(圆心P在x轴负半轴上),已知AB=10,AP=.(1)求点P到直线AB的距离;(2)求直线y=kx+b的解析式;(3)在上是否存在点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.yxPOBA1、知识内容:在此类问题中,往往是已知一条边,而它的对边为动边,需要利用这组对边平行且相等列出方程,进而解出相关数值.更复杂的有,一组对边的两条边长均为变量,需要分别表示后才可列出方程进行求解.2、解题思路:(1)找到或设出一定平行的两条边(一组对边);(2)分别求出这组对边的值或函数表达式;(3)列出方程并求解;(4)返回题面,验证求得结果.(5)【例4】如图,抛物线与y轴交于点A(0,1),过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.①当点P在线段OC上(不与点O、C重合)时,试用含m的代数式表示线段PM的长度;②联结CM、BN,当m为何值时,四边形BCMN为平行四边形?模块二:存在动边的平行四边形问题知识精讲例题解析yxMNPOCBA模块二:存在动边的平行四边形问题模块二:存在动边的平行四边形问题模块二:存在动边的平行四边形问题模块二:存在动边的平行四边形问题模块二:存在动边的平行四边形问题知识精讲知识精讲知识精讲知识精讲知识精讲例题解析例题解析例题解析例题解析例题解析中考复习6/11【例5】如图,已知抛物线经过A(0,1)、B(4,3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.BAOyx【例6】如图,在中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q...