2014年吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)﹣的相反数是()A.B.﹣C.7D.﹣72.(3分)下列图形中,是正方体表面展开图的是()A.B.C.D.3.(3分)计算(3ab)2的结果是()A.6abB.6a2bC.9ab2D.9a2b24.(3分)不等式组的解集为()A.x≤2B.x>﹣1C.﹣1<x≤2D.﹣1≤x≤25.(3分)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°6.(3分)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()第1页(共34页)A.3B.4C.D.57.(3分)如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=x﹣+1上,则m的值为()A.﹣1B.1C.2D.38.(3分)如图,在平面直角坐标系中,点A、B均在函数y=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2)B.(2,3)C.(3,2)D.(4,)二、填空题(每小题3分,共18分)9.(3分)计算:×=.10.(3分)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为元.11.(3分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若第2页(共34页)CD=3,则△ABD的面积为.12.(3分)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.13.(3分)如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为.14.(3分)如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=2﹣,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为(用含a的式子表示).三、解答题(本大题共10小题,共78分)第3页(共34页)15.(6分)先化简,再求值:•﹣,其中x=10.16.(6分)在一个不透明的袋子里装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下标号后放回,再从袋子里随机摸出1个乒乓球记下标号,请用画树状图(或列表)的方法,求两次摸出的乒乓球标号乘积是偶数的概率.17.(6分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.18.(7分)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高CD为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)第4页(共34页)19.(7分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.20.(7分)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.第5页(共34页)21.(8分)甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、...