2014年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)(2014•济宁)实数1,﹣1,﹣,0,四个数中,最小的数是()A.0B.1C.﹣1D.﹣2.(3分)(2014•济宁)化简﹣5ab+4ab的结果是()A.﹣1B.aC.bD.﹣ab3.(3分)(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边4.(3分)(2014•济宁)函数y=中的自变量x的取值范围是()A.x≥0B.x≠1﹣C.x>0D.x≥0且x≠1﹣5.(3分)(2014•济宁)如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10cm2B.10πcm2C.20cm2D.20πcm26.(3分)(2014•济宁)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的极差就越大D.样本容量越大,对总体的估计就越准确7.(3分)(2014•济宁)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=b﹣,其中正确的是()*K]A.①②B.②③C.①③D.①②③8.(3分)(2014•济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(xa﹣)(xb﹣)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b9.(3分)(2014•济宁)如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b1﹣)C.(﹣a,﹣b+1)D.(﹣a,﹣b+2)10.(3分)(2014•济宁)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()A.10cm.B.24cmC.26cmD.52cm二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2014•济宁)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.12.(3分)(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.13.(3分)(2014•济宁)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m4﹣,则=.14.(3分)(2014•济宁)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.15.(3分)(2014•济宁)如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为.三、解答题:本大题共7小题,共55分.16.(6分)(2014•济宁)已知x+y=xy,求代数式+﹣(1x﹣)(1y﹣)的值.17.(6分)(2014•济宁)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).18.(7分)(2014•济宁)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?19.(8分)(2014•济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需...