乘法公式(二))知识结构知精识讲平方差公式、完全平方公式是特殊的乘法公式,它既是前面知识“多项式乘多项式”的应用,也是后继知识因式分解,分式等的基础,对整个知识体系也起到了承上启下的作用,在初中阶段占有很重要的地位.两个公式都可以由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想.它在本章中起着举足轻重的作用,是前面知识的继承和发展,又是后面的分解因式和解一元二次方程的重要依据,起着承前起后的作用.1、平方差公式定义:两数和与这两数差相乘,等于这两个数的平方差..(1)、可以表示数,也可以表示式子(单项式和多项式)(2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式:如:2、平方差公式的特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差.3、完全平方公式定义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍...4、完全平方公式的特征:(1)左边是两个相同的二项式相乘;内容分析(2)右边是三项式,是左边两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;(3)公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.一、选择题1.下列可以用平方差公式计算的是().A.B.C.D.【难度】★【答案】B【解析】B选项可以变形为.【总结】本题主要考查平方差公式的运用,注意符号.2.若,括号内应填代数式().A.B.C.D.【难度】★【答案】C【解析】.【总结】本题主要考查平方差公式的运用,注意符号.3.下列各式中,计算正确的是().A.B.C.D.【难度】★【答案】C【解析】A选项应为:;B选项应为:;D选项应为:.【总结】本题主要考查完全平方公式的运用.4.的运算结果是().A.B.C.D.【难度】★【答案】C【解析】.【总结】本题主要考查完全平方公式的运用.5.计算的结果是().A.B.C.D.【难度】★★【答案】C【解析】解析如下:.【总结】本题主要考查平方差公式的运用,注意指数的变化.6.下列各式计算正确的是().A.B.C.D.【难度】★★【答案】C【解析】.【总结】本题主要考查平方下的符号变化.7.等于().A.B.C.D.【难度】★★【答案】C【解析】.【总结】本题主要考查平方差公式的运用,注意系数和指数的变化.8.如果,那么M等于().A.B.C.D.【难度】★★【答案】C【解析】.【总结】本题主要考查完全平方公式的运用,注意合并同类项.9.运算结果为的是().A.B.C.D.【难度】★★【答案】A【解析】.【总结】本题主要考查完全平方公式的逆用.10.已知是一个完全平方式,则等于().A.8B.C.D.【难度】★★【答案】C【解析】理由如下:.【总结】本题主要考查完全平方公式的运用,注意一个正数的平方根有两个.11.代数式可化为形式,其中为常数,则的值为().A.B.C.D.【难度】★★【答案】Aabab【解析】因为,所以,所以.【总结】本题主要考查完全平方公式的运用.12.如图,在边长为的正方形中挖掉一个边长为的小正方形(,把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.B.C.D.【难度】★★【答案】D【解析】左图的计算方式为;右图的计算方式为.【总结】面积割补法转换和公式转换之间的联系.13.如果,,是三边的长,且,那是()A.等边三角形.B.直角三角形.C.钝角三角形.D.形状不确定.【难度】★★★【答案】A【解析】因为,所以,所以.即.所以.即是等边三角形.【总结】本题主要考查完全平方公式的逆运用,如何配成完全平方.二、填空题14.填空:.【难度】★【答案】.【解析】【总结】本题主要考查平方差公式的运用.15.如图,从边长为的正方形内去掉一个边长为的小正方形,然后将剩余部分拼成一个长方形,上述操作所能验证的公式是__________.baab【难度】★【答案】.【解析】左图的计算方式为;右图的计算方式为.【总结】本题主要考查面积公式和割补法...