相交直线直被第三直所截同位角、角、同旁角两条线条线内错内平行直线平行的距离线间平行的距离线间判定方法性与质角邻补垂直角对顶同一平面不同的直内两条线斜交垂直的基本性质点到直的距离线段的垂直平分线线(一)概念:1.邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角.2.对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角.3.垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.4.垂线段知识结构相交线、平行线的复习模块一:相交直线知识精讲知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线模块一:相交直线过直线外一点,作已知直线的垂线,这点和垂足之间的线段.5.点到直线的距离直线外一点到这条直线的垂线段的长度.(二)性质:1.对顶角的性质:对顶角相等.2.邻补角的性质:互为邻补角的两个角和为180°.3.垂线的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短.【例1】填空:如右图所示截线为a,被截线为b、l时:同位角:________________;内错角:________________;同旁内角:________________;截线为b,被截线为a、l时:同位角:_________________;内错角:__________________;同旁内角:_______________.【例2】如图所示,直线AB和CD相交于点O,OE、OF是过点O的射线,其中构成对顶角的是()A.∠AOF和∠DOEB.∠EOF和∠BOEC.∠COF和∠BODD.∠BOC和∠AOD【例3】下列说法中,正确的有()(1)过两点有且只有一条线段(2)连结两点的线段叫做两点的距离(3)两点之间,线段最短(4)AB=BC,则点B是线段AC的中点(5)射线比直线短A.1个B.2个C.3个D.4个【例4】如图,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于()A.40°B.45°C.55°D.65°例题解析OFEDCBAOFEDCBA121110987654321lba例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析【例5】如果∠1与∠2互补,∠1与∠3互余,那么().A.∠2>∠3B.∠2=∠3C.∠2<∠3D.∠2≥∠3【例6】现在的时间是9点20分,此时钟面上的时针与分针的夹角是().A.B.155°C.D.【例7】如图,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_________.【例8】如图,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_________.【例9】(1)在下图中画出表示点P到直线a距离的垂线段PM;(2)过点P画出直线b的平行线c,与直线a交于点N;(3)如果直线a与b的夹角为35°,求出∠MPN的度数.【例10】如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与∠DOF的度数.EODCBA4321dcbaOFEDCBAPba12【例11】如图所示,已知:BC是从直线AD上出发的一条射线,BE平分∠ABC,∠EBF=90°,说明BF平分∠CBD的理由.【例12】如图,已知:∠1与∠2互余,DO⊥OC,EO平分∠COD,∠E=110°,求∠2的度数.1、平行线的基本性质经过直线外一点,有且只有一条直线与已知直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理及推论是整个初中平面几何的基石,是其它公理、定理的基础.平行公理及其推论在说明直线平行时,经常用到.注意:这条性质与...