2022年牡丹江市初中毕业学业考试数学试卷一、选择题1.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.函数中,自变量x的取值范围是()A.B.C.D.4.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3B.4C.5D.65.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.6.如图,BD是的直径,A,C在圆上,,的度数是()A.50°B.45°C.40°D.35°7.如图,等边三角形OAB,点B在x轴正半轴上,,若反比例函数图象的一支经过点A,则k的值是()A.B.C.D.8.若关于x的方程无解,则m的值为()A.1B.1或3C.1或2D.2或39.圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°10.观察下列数据:,,,,,…,则第12个数是()A.B.C.D.11.下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.则下列线段的比中:①,②,③,④,比值为的是()A.①②B.①③C.②④D.②③12.如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是()A.1B.2C.3D.4二、填空题13.在2022年3月13日北京冬残奥会闭幕当天,奥林匹克官方旗舰店再次发售1000000只“冰墩墩”,很快便售罄.数据1000000用科学记数法表示为______.14.如图,,,请添加一个条件______,使.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件______元.16.一列数据:1,2,3,x,5,5的平均数是4,则这组数据的中位数是______.17.的直径,AB是的弦,,垂足为M,,则AC的长为______.18.抛物线向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是______.19.如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是______.20.如图,在等腰直角三角形ABC和等腰直角三角形ADE中,,点D在BC边上,DE与AC相交于点F,,垂足是G,交BC于点H.下列结论中:①;②;③若,,则;④,正确的是______.三、解答题21.先化简,再求值.,其中.22.已知抛物线与x轴交于,两点,与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是______.注:抛物线的对称轴是直线,顶点坐标是.23.在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE.连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.24.为推进“冰雪进校园”活动,我市某初级中学开展:A.速度滑冰,B.冰尜,C.雪地足球,D.冰壶,E.冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱的冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.请解答下列问题:(1)这次被抽查的学生有多少人?(2)请补全条形统计图,并写出扇形统计图中B类活动扇形圆心角的度数是______;(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?25.在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为______米/分钟,乙的速度为______米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答...