2022年初中毕业学业考试数学试卷注意事项:1.考试时间是120分钟.2.总共3个大题,总分120分.一、选择题(每小题3分,共30分.)1.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.吨B.吨C.吨D.吨2.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.3.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.4.一组数据13,10,10,11,16的中位数和平均数分别是()A.11,13B.11,12C.13,12D.10,125.下列方程没有实数根的是()A.B.C.D.6.若二次函数的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)7.函数自变量x的取值范围是【】A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠38.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型C型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.10.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.(600-250)米B.(600-250)米C.(350+350)米D.500米二、填空题:(每小题3分,共30分.)11.分解因式:___.12.若两个连续的整数、满足,则的值为__________.13.已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________14.在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是___.15.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.16.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为______.17.在RtABC△中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=_______.18.如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.19.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产个,可列方程为___________.20.下列图形是将等边三角形按一定规律排列,则第个图形中所以等边三角形的个数是__________.三、解答题:(共60分.)21.先化简,再求值:,在﹣2,0,1,2四个数中选一个合适的代入求值.22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C123.如图,已知抛物线(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(﹣2,﹣2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.24.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:男、女观众对“课战”题材电视剧的喜爱情况统计图男观众对“谍战”题材电视剧的喜爱情况统计图请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区...