2022年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.6﹣的相反数是()A.6﹣B.﹣C.6D.2.某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.313.下列运算正确的是()A.a2+a3=a5B.(a3)2=a6C.(a﹣b)2=a2﹣b2D.x6÷x3=x24.2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量6.如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听7.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.88.如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是()A.1﹣2a>1﹣2bB.﹣a<﹣bC.a+b<0D.|a|﹣|b|>09.如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位10.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数和的图象交于P、Q两点.若S△POQ=15,则k的值为()A.38B.22C.﹣7D.﹣2211.如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π12.如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,共20分.)13.函数中,自变量的取值范围是.14.如图,在⊙O中,∠ABC=50°,则∠AOC等于_____15.对于非零实数a,b,规定a⊕b=,若(2x﹣1)⊕2=1,则x的值为_____.16.勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=_____.三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)17.(1)计算:;(2)先化简,再求值:()÷,其中a=﹣,b=+4.18.如图,中,E、F是对角线BD上两个点,且满足BE=DF.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是平行四边形.19.为让同学们了解新冠病毒的危害及预防措施,某中学举行了“新冠病毒预防”知识竞赛.数学课外活动小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组进行统计,并绘制了下列不完整的统计图表:分数段频数频率74.5﹣79.520.0579.5﹣84.58n84.5﹣89.5120.389.5﹣94.5m0.3594.5﹣99.540.1(1)表中m=,n=;(2)请补全频数分布直方图;(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.20.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)21.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于...