2020年贵州省黔西南州中考数学试卷一、选择题1.2的倒数是()A.2B.C.D.-2【答案】B【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.【详解】 2×=1,∴2的倒数是,故选B.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【答案】B【解析】【分析】本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:360000=3.6×105,故选B.【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【答案】D【解析】【分析】找到从上面看所得到的图形即可.【详解】解:从上面看可得四个并排的正方形,如图所示:故选D.【点睛】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.4.下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【答案】C【解析】【分析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后即可求解.【详解】A、a3、a2不是同类项,不能合并,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)4=a8,故D错误.故选:C.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,5【答案】A【解析】【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:本题考查了求一组数据的中位数,众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.出现次数最多的数据叫做这组数据的众数.将4,3,5,5,2,5,3,4,1按由小到大的顺序排列为:1,2,3,3,4,4,5,5,5,处在最中间的数是4,所以中位数是4,其中5出现了3次,出现次数最多,所以众数是5,故选:A.【点睛】本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【答案】C【解析】【分析】先根据平行线的性质得出,再根据即可求解.【详解】 AB∥CD,∴∠2=∠3=37°, ∠FEG=90°,∴∴∠1=90°-∠3=90°-37°=53°故选:C.【点睛】本题主要考查平行线的性质和平角的定义,掌握平行线的性质是解题的关键.7.如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【答案】B【解析】【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C⊥AB于点C.在Rt△OCA′,sinα=,所以A′C=A′O·sinα.由题意得A′O=AO=4,所以A′C=4sinα,因此本题选B.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【答案】D【...