济宁市二O二O年高中段学校招生考试数学试题一、选择题:1.的相反数是()A.B.C.D.【答案】D【解析】【分析】根据相反数的概念解答即可.【详解】解:的相反数是,故选D.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.3.14159精确到千分位为()A.3.1B.3.14C.3.142D.3.141【答案】C【解析】【分析】把万分位上的数字5进行四舍五入即可.【详解】解:3.14159精确到千分位为3.142.故选C.【点睛】本题考查近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.下列各式是最简二次根式的是()A.B.C.D.【答案】A【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.4.若一个多边形的内角和为1080°,则这个多边形的边数为【】A.6B.7C.8D.9【答案】C【解析】多边形内角和定理.【分析】设这个多边形的边数为n,由n边形的内角和等于180°(n2﹣),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.5.一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里【答案】C【解析】【分析】根据题意画出图形,根据三角形外角性质求出∠C=∠CAB=42°,根据等角对等边得出BC=AB,求出AB即可.【详解】解: 根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD-∠CAB=42°=∠CAB,∴BC=AB, AB=15海里/时×2时=30海里,∴BC=30海里,即海岛B到灯塔C的距离是30海里.故选C.【点睛】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出∠C=∠CAB,题目比较典型,难度不大.6.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()A.甲B.乙C.丙D.丁【答案】C【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解: 乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛, 丙的方差最小,即成绩比较稳定,∴选择丙参赛;故选:C.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15【答案】A【解析】【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.【点睛】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.8.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.9.如图,在△ABC中点D为△ABC的内心,A=60°,CD=2,BD=4∠.则△DBC的面积是()A.4B.2C.2D.4【答案】B【解析】【分析】过点B作BH⊥CD于点H.由点D为△ABC的内...