2020年浙江省初中毕业生学业水平考试(嘉兴卷)数学试题卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A.0.36×108B.36×107C.3.6×108D.3.6×1072.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.3.已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.24.一次函数y=2x﹣1的图象大致是()A.B.C.D.5.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C坐标()A.(﹣1,﹣1)B.(﹣,﹣1)C.(﹣1,﹣)D.(﹣2,﹣1)6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是()A.B.C.D.7.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是()A.2B.C.D.8.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×39.如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为()A.2B.10C.4D.510.已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值二、填空题(本题有6小题,每题4分,共24分)11.分解因式:________.12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:_______,使▱ABCD是菱形.13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是_____.14.如图,在半径为的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为_____;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为_____.15.数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程_____.16.如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为_____cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(1)计算:(2020)0﹣+|﹣3|;(2)化简:(a+2)(a﹣2)﹣a(a+1).18.比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+12x;②当x=0时,x2+12x;③当x=﹣2时,x2+12x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.19.已知:如图,在△OAB中,OA=OB,⊙O与AB相切与点C.求证:AC=BC.小明同学的证明过程如下框:小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.20.经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.x123456y62.921.51.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.21.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电...