2022年重庆市中考数学试卷A卷一、选择题1.5的相反数是()A.B.C.D.52.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线,被直线所截,,,则的度数为()A.B.C.D.4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度随飞行时间的变化情况,则这只蝴蝶飞行的最高高度约为()A.B.C.D.5.如图,与位似,点为位似中心,相似比为.若的周长为4,学科网(北京)股份有限公司则的周长是()A.4B.6C.9D.166.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.估计的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为,根据题意,下面所列方程正确的是()A.B.C.D.9.如图,在正方形中,平分交于点,点是边上一点,连接,若,则的度数为()A.B.C.D.10.如图,是的切线,B为切点,连接交于点,延长交于点,连接.若,且,则的长度是()学科网(北京)股份有限公司A.3B.4C.D.11.若关于的一元一次不等式组的解集为,且关于的分式方程的解是负整数,则所有满足条件的整数的值之和是()A.-26B.-24C.-15D.-1312.对多项式任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:,,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二、填空题13.计算:_________.14.有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________.15.如图,菱形中,分别以点,为圆心,,长为半径画弧,分别交对角线于点,.若,,则图中阴影部分的面积为_________.(结果不取近似值)16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,学科网(北京)股份有限公司这三座山各需两种树木数量和之比为,需香樟数量之比为,并且甲、乙两山需红枫数量之比为.在实际购买时,香樟的价格比预算低,红枫的价格比预算高,香樟购买数量减少了,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.三、解答题17.计算:(1);(2).18.在学习矩形的过程中,小明遇到了一个问题:在矩形中,是边上的一点,试说明的面积与矩形的面积之间的关系.他的思路是:首先过点作的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图㾗迹).在和中, ,∴.又,∴__________________① ,∴__________________②又__________________③∴.同理可得__________________④∴.19.公司生产、两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的、型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘学科网(北京)股份有限公司量的数据(单位:),并进行整理、描述和分析(除尘量用表示,共分为三个等级:合格,良好,优秀),下面给出了部分信息:10台型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的、型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比908926.6909030根据以上信息,解答下列问题:(1)填空:_________,_________,_________;(2)这个月公司可生产型扫地机器人共3000台,估计该月型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.已知一次函数的图象与反比例...