湖北省十堰市2021年数学中考试题一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.的相反数是()A.B.2C.D.【答案】D【解析】【详解】因为-+=0,所以-的相反数是.故选D.2.如图,直线,则()A.B.C.D.【答案】A【解析】【分析】利用平行线的性质得到,再利用三角形外角的性质即可求解.【详解】解: ,∴,∴,故选:A.【点睛】本题考查平行线的性质、三角形外角的性质,掌握上述基本性质定理是解题的关键.3.由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为()A.B.C.D.【答案】A【解析】【分析】根据从上面看得到的视图是俯视图,可得答案.【详解】解:该几何体从上向下看,其俯视图是,故选:A.【点睛】本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.4.下列计算正确的是()A.B.C.D.【答案】B【解析】【分析】根据同底数幂相乘、积的乘方、乘法公式逐一判断即可.【详解】解:A.,该项计算错误;B.,该项计算正确;C.,该项计算错误;D.,该项计算错误;故选:B.【点睛】本题考查整式乘法,掌握同底数幂相乘、积的乘方、乘法公式是解题的关键.5.某校男子足球队的年龄分布如下表年龄131415161718人数268321则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,15【答案】D【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.6.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.B.C.D.【答案】B【解析】【分析】设现在每天生产x台,则原来可生产(x−50)台.根据现在生产400台机器的时间与原计划生产450台机器的时间少1天,列出方程即可.【详解】解:设现在每天生产x台,则原来可生产(x−50)台.依题意得:.故选:B.【点睛】此题主要考查了列分式方程应用,利用本题中“现在生产400台机器的时间与原计划生产450台机器的时间少1天”这一个条件,列出分式方程是解题关键.7.如图,小明利用一个锐角是的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离为,为(即小明的眼睛与地面的距离),那么旗杆的高度是()A.B.C.D.【答案】D【解析】【分析】先根据题意得出AD的长,在Rt△AED中利用锐角三角函数的定义求出ED的长,由CE=CD+DE即可得出结论.【详解】解: AB⊥BC,DE⊥BC,AD∥BC,∴四边形ABCD是矩形, BC=15m,AB=1.5m,∴AD=BC=15m,DC=AB=1.5m,在Rt△AED中, ∠EAD=30°,AD=15m,∴ED=AD•tan30°=15×=5,∴CE=CD+DE=.故选:D.【点睛】本题考查的是解直角三角形在实际生活中的应用,熟知锐角三角函数的定义是解答此题的关键,属于基本知识的考查.8.如图,内接于是的直径,若,则()A.B.C.3D.4【答案】C【解析】【分析】首先过点O作OF⊥BC于F,由垂径定理可得BF=CF=BC,然后由∠BAC=120°,AB=AC,利用等边对等角与三角形内角和定理,即可求得∠C与∠BAC的度数,由BD为⊙O的直径,即可求得∠BAD与∠D的度数,又由AD=3,即可求得BD的长,继而求得BC的长.【详解】解:过点O作OF⊥BC于F,∴BF=CF=BC, AB=AC,∠BAC=120°,∴∠C=∠ABC=(180°−∠BAC)÷2=30°, ∠C与∠D是同弧所对的圆周角,∴∠D=∠C=30°, BD为...