江苏省扬州市2021年中考数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.实数100的倒数是()A.100B.C.D.2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱3.下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽4.不论x取何值,下列代数式的值不可能为0的是()A.B.C.D.5.如图,点A、B、C、D、E在同一平面内,连接、、、、,若,则()A.B.C.D.6.如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是()A.2B.3C.4D.57.如图,一次函数的图像与x轴、y轴分别交于点A、B,把直线绕点B顺时针旋转交x轴于点C,则线段长为()A.B.C.D.8.如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数的图像于点C、D,连接、、、,其中,下列结论:①;②;③,其中正确的是()A.①②B.①③C.②③D.①二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为______.10.计算:__________.11.在平面直角坐标系中,若点在第二象限,则整数m的值为_________.12.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.13.扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.14.如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为_____.15.如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.16.如图,在中,点E在上,且平分,若,,则的面积为________.17.如图,在中,,矩形的顶点D、E在上,点F、G分别在、上,若,,且,则的长为________.18.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算或化简:(1);(2).20.已知方程组的解也是关于x、y的方程的一个解,求a的值.21.为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数分布扇形统计图A.非常喜欢B.比较喜欢C.无所谓D.不喜欢抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜欢50人B.比较喜欢m人C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是______;(2)扇形统计图中表示A程度的扇形圆心角为_____,统计表中______;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).22.一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.(1)甲坐在①号座位的概率是_________;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.23.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂...