六年级同步有理数是初中数学六年级下学期第一章第一节的内容.重点是有理数的相关概念辨析,利用对数轴的理解对有理数进行大小比较,绝对值的化简等.难点是绝对值的化简及运算.预习阶段,我们会针对基础知识部分进行着重讲解,相关难点会在春季班课程中讲解.1、正数和负数在现实生活中,用正数和负数表示具有相反意义的量.2、有理数的概念整数和分数统称为有理数.3、有理数的分类按意义分:;按符号分:.注意:(1)零既不是正数,也不是负数,零是正数和负数的分界;(2)零和正数统称为非负数;零和负数统称为非正数.有理数内容分析知识结构模块一:有理数的意义知识精讲有理数有理数有理数有理数有理数有理数有理数有理数有理数有理数有理数有理数有理数有理数内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析内容分析知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构知识结构模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义模块一:有理数的意义知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲知识精讲步同级年六【例1】如果把收入80元记作80元,那么下列各数分别表示什么意义?(1)10元;(2)3.5元;(3)元;(4)0元.【难度】★【答案】(1)收入10元;(2)收入3.5元;(3)支出100元;(4)没有收入也没有支出.【解析】解题关键是理解‘正’和‘负’的相对性,确定一对具有相反意义的量,常见的具有相反意义的量:收入与支出、上升与下降、前进与后退、向东与向西等.【总结】本题考查了正数和负数的意义.【例2】下列说法错误的是()A.收入200元和支出300元是相反意义的量B.向北走6千米和向南走6千米是相反意义的量C.节约20千克粮食和浪费20千克水是相反意义的量D.存款2000元和取款3160元是相反意义的量【难度】★【答案】C【解析】粮食和水是两回事,故错误.【总结】本题考查了具有相反意义的量.【例3】下列说法中正确的是()A.正有理数和负有理数组成了全体有理数B.在有理数中,零的意义仅表示没有C.所有的小数都是有理数D.0既不是正数也不是负数【难度】★【答案】D【解析】有理数按正负可分为:正有理数、零、负有理数;有理数按意义可分为:整数和分数;无限不循环小数是无理数.【总结】本题考查了有理数的分类及意义.【例4】把下列各数填入它所属的圈内:,69,,,,0,46%,0.76,,.【难度】★例题解析负数正数例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析例题解析六年级同步【答案】正数:、、、、、;负数:、、.【解析】根据有理数的分类填写即可.【总结】本题考查了有理数的分类.【例5】下列各数中,哪些是正数?哪些是整数?哪些是非负数?哪些是有理数?,0.126,0,,,4.5,,101.0101,,20.【难度】★★【答案】正数:、、、、、、;整数:、0、、;非负数:、、、、、、、;有理数:、、、、、、、、.【解析】根据正数、整数、有理数的意义分类填写.【总结】本题考查了有理数的意义和分类.【例6】回答问题:(1)有没有最小的正数?有没有最大的正数?有没有最小的负数?有没有最大的负数?有没有最小的有理数?有没有最大的有理数?(2)有没有最小的非负数?有没有最大的非负数?有没有最小的非正数?有没有最大的非正数?(3)有没有这样的有理数,它既是正数也是负数?有没有这样的有理数,它既不是正数,也不是负数?【难度】★★【答案】(1)没有,没有,没有,没有,没有,没有;(2)有,没有,没有,有;(3)没有,有.【解析】正确的有理数分类.【总结】本题考查了有理数的分类及意义.【例7】改写下列各句,使其...