2015年江苏省扬州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.)1.(3分)实数0是()A.有理数B.无理数C.正数D.负数2.(3分)2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107B.7.49×106C.74.9×105D.0.749×1073.(3分)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组4.(3分)下列二次根式中的最简二次根式是()A.B.C.D.5.(3分)如图所示的物体的左视图(从左面看得到的视图)是()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()第1页(共31页)A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移37.(3分)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③8.(3分)已知x=2是不等式(x5﹣)(ax3a﹣+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1B.a≤2C.1<a≤2D.1≤a≤2二、填空题(本大题共有10小题,每小题3分,共30分.不许写出解答过程,请把答案直接填写在相应位置)9.(3分)﹣3的相反数是.10.(3分)因式分解:x39x=﹣.11.(3分)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.12.(3分)色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501020400500800100120150200第2页(共31页)000000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为(结果精确到0.01)13.(3分)若a23b=5﹣,则6b2a﹣2+2015=.14.(3分)已知一个圆锥的侧面积是2πcm2,它的侧面展开图是一个半圆,则这个圆锥的高为cm(结果保留根号).15.(3分)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.16.(3分)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.17.(3分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.第3页(共31页)18.(3分)如图,已知△ABC的三边长为a、b、c,且a<b<c,若平行于三角形一边的直线l将△ABC的周长分成相等的两部分.设图中的小三角形①、②、③的面积分别为S1,S2,S3,则S1,S2,S3的大小关系是.(用“<”号连接)三、解答题(本大题共有10小题,共96分.)19.(8分)(1)计算:()﹣1+|1﹣|﹣tan30°;(2)化简:÷(﹣).20.(8分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.22.(8分)“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉第4页(共31页)松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)求小明和小刚被分配到不同项目组的概率.23.(10分)如图,将▱ABCD沿过...