2021年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.几种气体的液化温度(标准大气压)如下表:气体氧气氢气氮气氦气液化温度℃﹣183﹣253﹣195.8﹣268其中液化温度最低的气体是()A.氦气B.氮气C.氢气D.氧气2.如图,在△ABC中,∠B=50°,∠C=70°,直线DE经过点A,∠DAB=50°,则∠EAC的度数是()A.40°B.50°C.60°D.70°3.如图所示的几何体,其俯视图是()A.B.C.D.4.下列计算正确的是()A.3a2+4a2=7a4B.•=1C.﹣18+12÷(﹣)=4D.﹣a﹣1=5.已知关于x的不等式组无实数解,则a的取值范围是()A.a≥﹣B.a≥﹣2C.a>﹣D.a>﹣26.某学校初一年级学生来自农村,牧区,城镇三类地区,下面是根据其人数比例绘制的扇形统计图,由图中的信息,得出以下3个判断,错误的有()①该校初一学生在这三类不同地区的分布情况为3:2:7.②若已知该校来自牧区的初一学生为140人,则初一学生总人数为1080人.③若从该校初一学生中抽取120人作为样本,调查初一学生父母的文化程度,则从农村、牧区、城镇学生中分别随机抽取30、20、70人,样本更具有代表性.A.3个B.2个C.1个D.0个7.在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=48.如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,下面d及π的值都正确的是()A.d=,π≈8sin22.5°B.d=,π≈4sin22.5°C.d=,π≈8sin22.5°D.d=,π≈4sin22.5°9.以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多,比其他的都少.其中真命题的个数有()A.1个B.2个C.3个D.4个10.已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0),且过A(0,b),B(3,a)两点(b,a是实数),若0<m<n<2,则ab的取值范围是()A.0<ab<B.0<ab<C.0<ab<D.0<ab<二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.因式分解:x3y﹣4xy=.12.正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2=.13.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为.(用含π的代数式表示),圆心角为度.14.动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有只,现年20岁的这种动物活到25岁的概率是.15.已知菱形ABCD的面积为2,点E是一边BC上的中点,点P是对角线BD上的动点.连接AE,若AE平分∠BAC,则线段PE与PC的和的最小值为,最大值为.16.若把第n个位置上的数记为xn,则称x1,x2,x3,…,xn有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,yn,其中yn是这个数列中第n个位置上的数,n=1,2,…,k且yn=并规定x0=xn,xn+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)计算求解:(1)计算()﹣1﹣(﹣)÷+tan30°;(2)解方程组.18.(8分)如图,四边形ABCD是平行四边形,BE∥DF且分别交对角线AC于点E,F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时,请分别说出四边形BEDF的形状.(无需说明理由)19.(10分)某大学为了解大...