2010年成都市中考数学试题A卷(共100分)一、选择题:(每小题3分,共15分)1.下列各数中,最大的数是()(A)(B)(C)(D)2.表示()(A)(B)(C)(D)3.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256000,这一人数用科学记数法表示为()(A)(B)(C)(D)4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.把抛物线向右平移1个单位,所得抛物线的函数表达式为()(A)(B)(C)(D)6.如图,已知,,则的度数为()(A)(B)(C)(D)7.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:每天使用零花钱(单位:元)12356人数25431则这15名同学每天使用零花钱的众数和中位数分别是()(A)3,3(B)2,3(C)2,2(D)3,58.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是()(A)相交(B)外切(C)外离(D)内含9.若一次函数的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是()(A)(B)(C)(D)10.已知四边形,有以下四个条件:①;②;③;④.从这四个条件中任选两个,能使四边形成为平行四边形的选法种数共有()(A)6种(B)5种(C)4种(D)3种二、填空题:(每小题3分,共15分)11.在平面直角坐标系中,点位于第___________象限.12.若为实数,且,则的值为___________.13.如图,在中,为的直径,,则的度数是_____________度.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是,则的值是_____________.15.若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是___________.三、(第1小题7分,第2小题8分,共15分)16.解答下列各题:(1)计算:.(2)若关于的一元二次方程有两个实数根,求的取值范围及的非负整数值.四、(第17题8分,第18题10分,共18分)17.已知:如图,与相切于点,,的直径为.(1)求的长;(2)求的值.18.如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图象写出使反比例函数的值大于一次函数的值的的取值范围.五、(第19题10分,第20题12分,共22分)19.某公司组织部分员工到一博览会的五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.20.已知:在菱形中,是对角线上的一动点.(1)如图甲,为线段上一点,连接并延长交于点,当是的中点时,求证:;(2)如图乙,连结并延长,与交于点,与的延长线交于点.若,求和的长.B卷(共50分)一、填空题:(每小题4分,共20分)21.设,是一元二次方程的两个实数根,则的值为__________________.22.如图,在中,,,,动点从点开始沿边向以的速度移动(不与点重合),动点从点开始沿边向以的速度移动(不与点重合).如果、分别从、同时出发,那么经过_____________秒,四边形的面积最小.23.有背面完全相同,正面上分别标有两个连续自然数(其中)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为)不小于14的概率为_________________.24.已知是正整数,是反比例函数图象上的一列点...