2008年四川省成都市中考数学试卷1.一、选择题:(每小题3分,共30分)1.2cos45°的值等于(A)(B)(C)(D)2.化简(-3x2)·2x3的结果是(A)-6x5(B)-3x5(C)2x5(D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4(B)5(C)6(D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数y=中,自变量x的取值范围是(A)x≥-3(B)x≤-3(C)x≥3(D)x≤37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF(B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E(D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00~12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15(B)10,15(C)15,20(D)10,2019.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12πcm2(B)15πcm2(C)18πcm2(D)24πcm210.有下列函数:①y=-3x;②y=x–1:③y=-(x<0);④y=x2+2x+1.其中当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有(A)①②(B)①④(C)②③(D)③④第Ⅱ卷(非选择题,共70分)注意事项:1.A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。2.答卷前将密封线内的项目填写清楚。二、填空题:(每小题4分,共16分)将答案直接写在该题目中的横线上.11.现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为=0.32,=0.26,则身高较整齐的球队是队.12.已知x=1是关于x的一元二次方程2x2+kx–1=0的一个根,则实数k的值是.13.如图,已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=.14.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是.2三、(第15题每小题6分,第16题6分,共18分)15.解答下列各题:(1)计算:.(2)化简:16.解不等式组并写出该不等式组的最大整式解.四、(每小题8分,共16分)17.如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)18.如图,已知反比例函数y=的图象经过点A(1,-3),一次函数y=kx+b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.(1)试确定这两个函数的表达式;(2)求点B的坐标.3五、(每小题10分,共20分)19.一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20.已知:在梯形ABCD中,AD∥BC,AB=DC,E、F分别是AB和BC边上的点.(1)如图①,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面积的值;(2)如图②,连接EF并...