2012年浙江省台州市中考数学试卷一、选择题:本大题共10小题,每小题4分,共32分,在每小题列出的四个选项中,选出符合题目要求的.1.(4分)计算﹣1+1的结果是()A.1B.0C.﹣1D.﹣22.(4分)如图,是由四个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下面四个汽车标志图案中,是中心对称图形的是()A.B.C.D.4.(4分)如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于()A.50°B.60°C.65°D.70°5.(4分)计算(﹣2a)3的结果是()A.6a3B.﹣6a3C.8a3D.﹣8a36.(4分)如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()第1页(共19页)A.5B.10C.20D.407.(4分)点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y2<y3D.y1<y3<y28.(4分)为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司年工资中等水平的是()A.方差B.众数C.中位数D.平均数9.(4分)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.B.C.D.10.(4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+1二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣1=.12.(5分)不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出第2页(共19页)一个球,则摸到红球的概率是.13.(5分)计算的结果是.14.(5分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=度.15.(5分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为厘米.16.(5分)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣|+2﹣1﹣.18.(8分)解不等式组,并把解集在数轴上表示出来.19.(8分)如图,正比例函数y=kx(x≥0)与反比例函数y=的图象交于点A(2,3),第3页(共19页)(1)求k,m的值;(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.20.(8分)如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的仰角∠EAB为15°,码头D的仰角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).21.(10分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?22.(12分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,第4页(共19页)∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.23.(12分)某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:时间t(秒)00.20.40.60.81.01.2…行驶距离s(...