2016年湖南省株洲市中考数学试卷一、选择题(每小题只有一个正确答案,本题共10小题,共30分)1.(3分)下列数中,﹣3的倒数是()A.﹣B.C.﹣3D.32.(3分)下列等式错误的是()A.(2mn)2=4m2n2B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=﹣8m5n53.(3分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.61.34A.甲B.乙C.丙D.丁4.(3分)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°5.(3分)不等式的解集在数轴上表示为()A.B.C.D.6.(3分)在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)7.(3分)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DCB.OA=OCC.∠BOE=∠OBAD.∠OBE=∠OCE8.(3分)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1B.2C.3D.49.(3分)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是()A.x<2B.x>5C.2<x<5D.0<x<2或x>510.(3分)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3B.m≥C.n≤2D.b<1二、填空题(本题共8小题,每题3分,共24分)11.(3分)计算:3a﹣(2a﹣1)=.12.(3分)据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为.13.(3分)从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率是.14.(3分)如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为.15.(3分)分解因式:(x﹣8)(x+2)+6x=.16.(3分)△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=度.17.(3分)已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1•k2=.18.(3分)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=.三、解答题(本大题共8小题,共66分)19.(6分)计算:.20.(6分)先化简,再求值:,其中x=3.21.(8分)某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题(1)2015年比2011年增加人;(2)请根据扇形统计图求出2015年参与跑步项目的人数;(3)组织者预计2016年参与人员人数将比2015年的人数增加15%,各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数.22.(8分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩...