2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.﹣B.﹣2C.D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m2+2m=3m3B.m4÷m2=m2C.m2•m3=m6D.(m2)3=m54.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.第1页(共27页)C.D.5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A.15°B.20°C.25°D.40°7.(3分)一组数据1,8,8,4,6,4的中位数是()A.4B.5C.6D.88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()第2页(共27页)A.2B.C.3D.410.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为.12.(3分)若一次函数y=2x+2的图象经过点(3,m),则m=.13.(3分)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是.14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是.15.(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.第3页(共27页)16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为.17.(3分)如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为.18.(3分)如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到△EF1B;点F2是CF1的中点,连接EF2,BF2,得到△EF2B;点F3第4页(共27页)是CF2的中点,连接EF3,BF3,得到△EF3B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△EFnB的面积为.(用含正整数n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(﹣)÷,其中x=﹣3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;第5页(共27页)(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(...