2020年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.(2分)﹣6的倒数是()A.﹣B.C.﹣6D.6【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣.故选:A.2.(2分)近年来,我国5G发展取得明显成效,截至2020年2月底,全国建设开通5G基站达16.4万个,将数据16.4万用科学记数法表示为()A.164×103B.16.4×104C.1.64×105D.0.164×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16.4万=164000=1.64×105.故选:C.3.(2分)如图,是由五个相同的小立方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:观察图形可知,这个几何体的俯视图是.故选:A.4.(2分)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁13141516人数3562则这16名队员年龄的中位数和众数分别是()A.14,15B.15,15C.14.5,14D.14.5,15【分析】根据中位数、众数的定义分别进行解答,即可得出答案.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15;故选:D.5.(2分)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°【分析】根据三角形的内角和定理和三角形的外角的性质即可得到结论.【解答】解: ∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°(三角形内角和定义). CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°.故选:C.6.(2分)某校计划购买篮球和排球共100个,其中篮球每个110元,排球每个80元.若购买篮球和排球共花费9200元,该校购买篮球和排球各多少个?设购买篮球x个,购买排球y个,根据题意列出方程组正确的是()A.B.C.D.【分析】设购买篮球x个,购买排球y个,根据“购买篮球和排球共100个,其中篮球每个110元,排球每个80元.若购买篮球和排球共花费9200元”列出方程组,此题得解.【解答】解:设购买篮球x个,购买排球y个,由题意得:.故选:D.7.(2分)如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4B.C.6D.【分析】连结DP,如图,根据菱形的性质得BA=BC=5,S△ABC=S菱形ABCD=12,然后利用三角形面积公式,由S△ABC=S△PAB+S△PBC,得到×5×PE+×5×PF=12,再整理即可得到PE+PF的值.【解答】解:连结DP,如图, 四边形ABCD为菱形,菱形ABCD的周长为20,∴BA=BC=5,S△ABC=S菱形ABCD=12, S△ABC=S△PAB+S△PBC,∴×5×PE+×5×PF=12,∴PE+PF=,故选:B.8.(2分)如图,在四边形ABCD中,AD∥BC,∠A=45°,∠C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以cm/s的速度沿AB向终点B运动,点N以2cm/s的速度沿折线AD﹣DC向终点C运动.设点N的运动时间为ts,△AMN的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【分析】分三种情形:如图1中,当0<t≤2时,如图2中,当2<t≤3时,如图3中,当3<t≤3.5时,分别求解即可.【解答】解:如图1中,当0<t≤2时,过点M作MH⊥AN于H.S=•AN•MH=×2t×t•cos45°=t2,如图2中,当2<t≤3时,连接DM,S=S△MND+S△AMD﹣S△ADN=×(2t﹣4)×(4﹣t)+×4×t﹣×4×(2t﹣4)=﹣t2+4t,如图3中,当3<t≤3.5时,连接BM,S=S△MND+S△AMD﹣S△ADN=×(2t﹣4)×1+×4×3﹣×4×(2t﹣4)=﹣3t+12,由此可知函数图象是选项B,故选:B.二、填空题(共8小题,每小题3分,满分24分)9.(3分)不等式>1的解集为x>﹣2.【分析】先去分母,再移项、合并即可得.【解答】解: >1,∴4+x>2,则x>﹣2,故答案为:x>﹣2.10.(3分...