第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.-5的相反数是()A.-5B.C.D.5【答案】D.【解析】试题分析:根据相反数的定义直接求得结果.因为只有符号不同的两个数互为相反数,所以﹣5的相反数是5.故选D.考点:相反数.2.下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【答案】A.【解析】确.故选A.考点:简单几何体的三视图.3.下列计算正确的是()A.B.C.D.【答案】D.【解析】试题分析:根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.考点:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.4.为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/4568910户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6B.9,6C.9,6D.6,7【答案】B.【解析】考点:众数;中位数.5.若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A.B.C.D.【答案】D.【解析】试题分析:由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a<0,b>0,然后一一判断各选项即可解决问题. 一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.考点:一次函数图象与系数的关系.6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,,则的度数是()A.75°B.85°C.60°D.65°【答案】B.【解析】考点:平行线的性质.7.如图,在中,分别是的中点,以为斜边作,若,则下列结论不正确的是()A.B.平分C.D.【答案】C.【解析】由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确. AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°. Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,学.科*网不符合题意; E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°. F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°, AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意; ∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意; Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD, AB=AC,∴AB=CD,故D正确,不符合题意.故选C.考点:三角形中位线定理;等腰三角形的性质;勾股定理.8.如图,在菱形中,,它的一个顶点在反比例函数的图像上,若将菱形向下平移2个单位,点恰好落在函数图象上,则反比例函数解析式为()A.B.C.D.【答案】A.【解析】点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为.故选A.考点:反比例函数图象上点的坐标特征;菱形的性质;坐标与图形变化﹣平移.9.如图,在中,,点在上,,点是上的动点,则的最小值为()A.4B.5C.6D.7【答案】B.【解析】 DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=.故选B.考点:轴对称﹣最短路线问题;等腰直角三角形.10.如图,直线的解析式为,它与轴和轴分别相交于两点,平行于直线的直线从原点出发,沿轴的正方向以每秒1个单位长度的速度运动.它与轴和轴分别相交于两点,运动时间为秒(),以为斜边作等腰直角三角形(两点分别在两侧),若和的重合部分的面积为,则与之间的函数关系的图角大致是()A.B.C....