2020年辽宁省营口市中考数学真题试卷及解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣6的绝对值是()A.6B.﹣6C.16D.−162.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.3.下列计算正确的是()A.x2•x3=x6B.xy2−14xy2¿34xy2C.(x+y)2=x2+y2D.(2xy2)2=4xy44.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为()A.66°B.56°C.68°D.58°5.反比例函数y¿1x(x<0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABC中,DE∥AB,且CDBD=32,则CECA的值为()A.35B.23C.45D.327.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°8.一元二次方程x25﹣x+6=0的解为()A.x1=2,x2=﹣3B.x1=﹣2,x2=3C.x1=﹣2,x2=﹣3D.x1=2,x2=39.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.8410.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y¿kx(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD¿32,则k的值为()A.3B.52C.2D.1二、填空題(每小题3分,共24分)11.ax22﹣axy+ay2=.12.长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为.13.(3√2+√6)(3√2−√6)=.14.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S甲2=3.83,S乙2=2.71,S丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是.15.一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为.17.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.18.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.三、解答题(19小题10分,20小题10分,共20分)19.(10分)先化简,再求值:(4−xx−1−¿x)÷x−2x−1,请在0≤x≤2的范围内选一个合适的整数代入求值.20.(10分)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.四、解答题(21小题12分,22小题12分,共24分)21.(12分)“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为;(3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.22.(12分)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,...