知识必备10视图与投影、尺规作图易错点1:由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A.2B.3C.4D.5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.【变式1】.(2023•南皮县校级一模)用小立方块搭成的几何体,从左面看和从上面看如下,这样的几何体最多要个小立方块,最少要个小立方块,则等于A.12B.13C.14D.15【分析】根据左视图以及俯视图,可以在俯视图中标出各个位置的正方体的个数,进而得到的值.【解答】解:如图,根据俯视图标数法,可知最多需要7个,最少需要5个,即,(第2行3个空可相互交换)故选:.【点评】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【变式2】.(2023•巴中一模)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是A.4B.5C.6D.7【分析】由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.【变式3】.(2023•青山区校级模拟)小明用大小相等的正方体摆出了一个立体图形,这个立体图形从主视图、俯视图、左视图看都只能看见4个方块,则小明至少用了正方体.A.4个B.5个C.6个D.7个【分析】根据主视图、俯视图和左视图的个数确定答案即可.【解答】解:根据俯视图有4个方块可得最底层有4个小立方体,根据主视图和左视图也都能看见4个方块可得第二层至少有2个小立方体,所以至少有个正方体,故选:.【点评】本题考查了由三视图判断几何体的知识,重点培养同学们的立体直观能力.【变式4】.(2023•来凤县模拟)用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【解答】解:有两种可能;由主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,最多为个小立方块,最少为个小立方块.故选:.【点评】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.【变式5】.(2023·河北·统考中考真题)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个,故选:B.【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.【变式6】.(2023·四川眉山·统考中考真题)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6B.9C.10D.14【答案】B【分析】根据俯视图可得底层最少有6个,再结合左视图可得第二层最少有2个,即可解答.【详解】解:根据俯视图可得搭成...