知识必备01数与式方法一:实数计算中的规律问题的解决方法一.选择题(共1小题)1.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣【分析】根据给出的数据可以推算出第n个数是×(﹣1)n+1所以第12个数字把n=12代入求值即可.【解答】解:根据给出的数据特点可知第n个数是×(﹣1)n+1,∴第12个数就是×(﹣1)12+1=﹣.故选:D.【点评】考查了找规律以及代数式求值问题,关键要读懂题意,能根据题意找到规律并利用规律解决问题.二.填空题(共3小题)2.(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是744.【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解答】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数. 这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点评】本题考查了数列的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.3.(2022•鄂尔多斯)按一定规律排列的数据依次为,,,……按此规律排列,则第30个数是.【分析】由所给的数,发现规律为第n个数是,当n=30时即可求解.【解答】解: ,,,……,∴第n个数是,当n=30时,==,故答案为:.【点评】本题考查数字的变化规律,能够通过所给的数,探索出数的一般规律是解题的关键.4.(2023•甘孜州)有一列数,记第n个数为an,已知a1=2,当n>1时,an=,则a2023的值为2.【分析】分别计算出ai(i为正整数),根据所发现的规律即可解决问题.【解答】解:由题知,a1=2,,,,…由此可知,.所以a2023=2.故答案为:2.【点评】本题考查实数计算中的规律,能根据计算出的ai(i为正整数)的值发现规律是解题的关键.方法二:有关实数与数轴的应用题的解决方法一.选择题(共5小题)1.(2023•徐州)如图,数轴上点A、B、C、D分别对应实数a、b、c、d,下列各式的值最小的是()A.|a|B.|b|C.|c|D.|d|【分析】结合数轴得出a,b,c,d四个数的绝对值大小进行判断即可.【解答】解:由数轴可得点A离原点距离最远,其次是D点,再次是B点,C点离原点距离最近,则|a|>|d|>|b|>|c|,其中值最小的是|c|,故选:C.【点评】本题考查实数与数轴的关系及绝对值的几何意义,离原点越近的点所表示的数的绝对值越小是解题的关键.2.(2023•自贡)如图,数轴上点A表示的数是2023,OA=OB,则点B表示的数是()A.2023B.﹣2023C.D.﹣【分析】结合已知条件,根据实数与数轴的对应关系即可求得答案.【解答】解: OA=OB,点A表示的数是2023,∴OB=2023, 点B在O点左侧,∴点B表示的数为:02023﹣=﹣2023,故选:B.【点评】本题主要考查实数与数轴的对应关系,此为基础且重要知识点,必须熟练掌握.3.(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.2【分析】关于原点对称的数是互为相反数.【解答】解: 关于原点对称的数是互为相反数,又 1和﹣1是互为相反数,故选:C.【点评】本题考查数轴和相反数的知识,掌握基本概念是解题的关键.4.(2023•杭州)已知数轴上的点A,B分别表示数a,b,其中﹣1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.【分析】根据a,b的范围,可得a×b的范围,从而可得点C在数轴上的位置,从而得出答案.【解答】解: ﹣1<a<0,0<b<1,∴﹣1<a×b<0,即﹣1<c<0,那么点C应在﹣1和0之间,则A,C,D不符合题意,B符合题意,故选:B.【点评】本题主要考查实数与数轴的关系,结合已知条件求得﹣1<a×b<0是解题的关键.5.(2023•菏泽)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b﹣a)<0B.b(...