试卷第1页,共3页2022年高考全国甲卷数学(理)真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若,则()A.B.C.D.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集,集合,则()A.B.C.D.试卷第2页,共3页4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.函数在区间的图象大致为()A.B.C.D.6.当时,函数取得最大值,则()A.B.C.D.17.在长方体中,已知与平面和平面所成的角均为,试卷第3页,共3页则()A.B.AB与平面所成的角为C.D.与平面所成的角为8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,()A.B.C.D.9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则()A.B.C.D.10.椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若试卷第4页,共3页直线的斜率之积为,则C的离心率为()A.B.C.D.11.设函数在区间恰有三个极值点、两个零点,则的取值范围是()A.B.C.D.12.已知,则()A.B.C.D.二、填空题13.设向量,的夹角的余弦值为,且,,则.14.若双曲线的渐近线与圆相切,则.15.从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为.16.已知中,点D在边BC上,.当取得最小值时,.三、解答题17.记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.18.在四棱锥中,底面试卷第5页,共3页.(1)证明:;(2)求PD与平面所成的角的正弦值.19.甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.20.设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.21.已知函数.(1)若,求a的取值范围;(2)证明:若有两个零点,则.试卷第6页,共3页22.在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.23.已知a,b,c均为正数,且,证明:(1);(2)若,则.答案第1页,共2页《2022年高考全国甲卷数学(理)真题》参考答案题号12345678910答案CBDBABDBCA题号1112答案CA1.C【分析】由共轭复数的概念及复数的运算即可得解.【详解】故选:C2.B【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为,所以错;讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为,讲座前问卷答题的正确率的极差为,所以错.故选:B.3.D【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,,所以,所以.故选:D.答案第2页,共2页4.B【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如...