高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (学生版).docx.doc本文件免费下载 【共10页】

高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (学生版).docx.doc
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (学生版).docx.doc
高中数学高考数学10大专题技巧--专题15 已知核心方程(显性)之直线过定点模型 (学生版).docx.doc
专题15已知核心方程(显性)之直线过定点模型定点问题——确定方程定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.证明直线(曲线)过定点的基本思想是是确定方程,即使用一个参数表示直线(曲线)方程,根据方程的成立与参数值无关得出x,y的方程组,以方程组的解为坐标的点就是直线(曲线)所过的定点.核心方程是指已知条件中的等量关系.【方法总结】(1)单参数法①设动直线PM方程为y=k(x-x0)+y0;②联立直线与椭圆(抛物线),解出点M的坐标为(A(k),B(k)),同理(由核心方程代换),得出点N的坐标为(C(k),D(k));③写出动直线MN方程,并整理成kf(x,y)+g(x,y)=0;④根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⑤方程组的解为坐标的点就是直线所过的定点.(2)双参数法①设动直线MN方程(斜率存在)为y=kx+t;②由核心方程得到f(k,t)=0(常用韦达定理);③把t用k表示或把k用t表示,即kf(x,y)+g(x,y)=0(或tf(x,y)+g(x,y)=0);④根据直线过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⑤方程组的解为坐标的点就是直线所过的定点.【例题选讲】[例1]如图所示,设椭圆M:+=1(a>b>0)的左顶点为A,中心为O,若椭圆M过点P,且AP⊥OP.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE过定点.[例2]已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个焦点恰好与抛物线y2=4x的焦点重合.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,过点A作椭圆C的两条动弦AB,AC,若直线AB,AC斜率之积为,直线BC是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.[例3]已知P是抛物线E:y2=2px(p>0)上一点,P到直线x-y+4=0的距离为d1,P到E的准线的距离为d2,且d1+d2的最小值为3.(1)求抛物线E的方程;(2)直线l1:y=k1(x-1)交E于点A,B,直线l2:y=k2(x-1)交E于点C,D,线段AB,CD的中点分别为小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.comM,N,若k1k2=-2,直线MN的斜率为k,求证:直线l:kx-y-kk1-kk2=0恒过定点.[例4](2017·全国Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.[例5]如图,过顶点在原点、对称轴为y轴的抛物线E上的点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定点.[例6](2019·北京)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.[例7]已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P为坐标平面内的一点,且|OP|=,PF1·PF2=-,O为坐标原点.(1)求椭圆C的方程;(2)设M为椭圆C的左顶点,A,B是椭圆C上两个不同的点,直线MA,MB的倾斜角分别为α,β,且α+β=.证明:直线AB恒过定点,并求出该定点的坐标.【对点训练】1.已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点.(1)求抛物线C的方程;(2)若直线OA,OB的斜率之积为-,求证:直线AB过x轴上一定点.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com2.已知椭圆C:+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(x-3)2+(y-1)2=3相切.(1)求椭圆C的方程;(2)若不过点A的动直线l与椭圆C交于P,Q两点,且AP·AQ=0,求证:直线l过定点,并求该定点的坐标.小学、初中、高中各种试卷真题知识归纳文案合同PPT等免费下载www.doc985.com3.已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2)为抛物线C上...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

与本文档类似文档
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
2023《大考卷》二轮专项分层特训卷•数学·文科【统考版】热点问题专练 12.docx
免费
30下载
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
上海市奉贤区2022年高三第一学期期末(一模)数学答案.docx
免费
0下载
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
2014年高考数学试卷(文)(新课标Ⅱ)(解析卷) (2).pdf
免费
0下载
1996年北京高考理科数学真题及答案.doc
1996年北京高考理科数学真题及答案.doc
免费
25下载
2015年高考数学试卷(文)(陕西)(解析卷).doc
2015年高考数学试卷(文)(陕西)(解析卷).doc
免费
0下载
2006年重庆高考理科数学真题及答案.doc
2006年重庆高考理科数学真题及答案.doc
免费
12下载
高中2024版考评特训卷·数学【新教材】考点练63.docx
高中2024版考评特训卷·数学【新教材】考点练63.docx
免费
0下载
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
2024年高考数学试卷(新课标Ⅰ卷)(空白卷) (10).docx
免费
0下载
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
2014年高考数学试卷(理)(大纲版)(解析卷).pdf
免费
0下载
专题06 立体几何(解答题)(文科)(解析版).docx
专题06 立体几何(解答题)(文科)(解析版).docx
免费
0下载
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
高中数学高考数学10大专题技巧--专题03 用an与Sn的关系求通项公式(教师版).docx
免费
0下载
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
二轮专项分层特训卷··高三数学·文科函数与导数(12).doc
免费
7下载
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
2024版《大考卷》全程考评特训卷·数学【新教材】考点练59.docx
免费
5下载
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word)  课时作业(十四).docx
高中数学·选择性必修·第二册·(RJ-A版)课时作业(word) 课时作业(十四).docx
免费
12下载
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
高考数学专题13 统计(5大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(新高考专用)(解析版).docx
免费
0下载
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
2018年高考数学试卷(文)(新课标Ⅰ)(解析卷) (1).pdf
免费
0下载
2023年上海高考数学真题及答案 .docx
2023年上海高考数学真题及答案 .docx
免费
28下载
1999年广东高考文科数学真题及答案.doc
1999年广东高考文科数学真题及答案.doc
免费
8下载
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
二轮专项分层特训卷··高三数学·文科热点(二) 恒成立及参数.doc
免费
19下载
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
高中数学高考数学10大专题技巧--专题一 函数的定义域(教师版).docx
免费
0下载
我的小图库
实名认证
内容提供者

该用户很懒,什么也没介绍

相关文档

阅读排行

确认删除?
回到顶部
客服号
  • 客服QQ点击这里给我发消息
QQ群
  • QQ群点击这里加入QQ群